Citation:
Yu Li, Lanlan Song, Hongxiu Zhang. Exploring the Innovation in Teaching Principles of Chemical Engineering: Emphasizing Foundational Knowledge and Practical Skills[J]. University Chemistry,
;2024, 39(8): 91-98.
doi:
10.3866/PKU.DXHX202312087
-
Addressing the challenges faced in “Principles of Chemical Engineering” teaching, characterized by students’ difficulties in comprehension, application, and persistence, the teaching team, guided by the Outcome-Based Education (OBE) philosophy, has enriched the theoretical teaching framework through a “multi-dimensional and comprehensive” approach. Efforts to solidify foundational knowledge and strengthen practical skills aim to cultivate chemical engineering thinking. The adoption of a “multi-project, multi-stakeholder” approach for teaching evaluation has facilitated the innovative reform of the “Principles of Chemical Engineering” course. This initiative has significantly enhanced students’ abilities in innovation, practice, and engineering thinking. Simultaneously, as the teaching team progresses with the instructional innovations and reforms, their engagement in teaching research and participation in teaching competitions have notably improved their teaching competencies.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[1]
-
-
-
[1]
Tingting Wang , Chufeng Sun , Zhenhua Li , Hongling Wang , Wenfang Wang , Xiaoping Su , Lujuan Cui , Chenjun Wang . Four-Stage Progressive Teaching Innovation in “Chemical Engineering Principles” for Cultivating Practical Engineering Skills. University Chemistry, 2025, 40(7): 112-118. doi: 10.12461/PKU.DXHX202503052
-
[2]
Rui Xu , Wei Li , Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081
-
[3]
Shengyan Yang , Xiangzhen Meng , Xin Wang , Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019
-
[4]
Xianglan Zhang , Jingwen Ma , Junya Cao , Weibin Cai , Zhibing Chang , Jinchang Liu . “价值引领,固基强能”的化工原理教改与实践. University Chemistry, 2025, 40(8): 11-17. doi: 10.12461/PKU.DXHX202410041
-
[5]
Haiyun Shen , Yutong Liu , Wenge Jiang , Qiuhua Yang . 新工科背景下大学化学课程创新与实践. University Chemistry, 2025, 40(6): 77-84. doi: 10.12461/PKU.DXHX202405169
-
[6]
Xia Yin , Huiling Geng , Junru Wang . Innovative Reform Practice in Agriculture-Forestry Organic Chemistry Curriculum based on O-VALUE Model. University Chemistry, 2025, 40(7): 97-105. doi: 10.12461/PKU.DXHX202408031
-
[7]
Yang Lei , Jieqiong Cai , Daming Sun , Caihong Tao . Exploration and Practice of Integrating Moral Education with Engineering Talent Development in the Instruction of “Principles of Chemical Engineering”. University Chemistry, 2025, 40(3): 230-236. doi: 10.12461/PKU.DXHX202406071
-
[8]
Linlin Guo , Jinjun Zhang , Chengpeng Miao , Bojing Liu , Xiaozhen Fan . Design and Practice of Integrating Ideological and Political Education into Instrumental Analysis Course Based on OBE Concept: Introduction. University Chemistry, 2024, 39(11): 87-95. doi: 10.12461/PKU.DXHX202403001
-
[9]
Fang Li , Xiang Wu , Bing Li , Yougui Li . Design and Practice of Course Ideological and Political Education in Modern Instrumental Analysis Based on the OBE Concept. University Chemistry, 2025, 40(7): 26-33. doi: 10.12461/PKU.DXHX202409020
-
[10]
Dongxue Han , Zhuoyong Li , Hanbo Zou , Xu Wu , Yang Yuan , Hongbin Li . Research on Innovative Experimental Teaching to Cultivate Top Talents. University Chemistry, 2024, 39(7): 230-236. doi: 10.12461/PKU.DXHX202406094
-
[11]
Xiang Wu , Chengfeng Zhu , Fang Li , Bing Li , Yanming Fu , Lanjun Cheng , Yougui Li . Cultivating the Innovative Practical Abilities of College Students Based on the OBE Concept: Taking the Applied Chemistry Major of Hefei University of Technology as an Example. University Chemistry, 2024, 39(2): 280-285. doi: 10.3866/PKU.DXHX202308040
-
[12]
Tongqi Ye , Qi Wang , Yuewen Ye , Yanqing Wang , Hongyang Zhou , Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116
-
[13]
Yan Zhao , Weiping Luo , Haoran Liu , Yongqing Kuang , Zhaoyang Wu , Weijun Yang , Yongjun Li , Dongcai Guo . Construction and Practice of the Chemistry and Chemical Engineering Experimental Teaching Center of Hunan University. University Chemistry, 2024, 39(7): 147-152. doi: 10.12461/PKU.DXHX202405059
-
[14]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[15]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[16]
Qin Tu , Anju Tao , Tongtong Ma , Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062
-
[17]
Gonglan Ye , Xia Yin , Feng Xu , Peng Yang , Yingpeng Wu , Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071
-
[18]
Qiong Luo , Zhiguang Xu , Xuan Xu , Ganquan Wang , Bin Peng . Exploration of Innovative Teaching in Structural Chemistry Course under the Emerging Engineering Education Model. University Chemistry, 2025, 40(4): 200-207. doi: 10.12461/PKU.DXHX202407016
-
[19]
Yan Li , Fei Ding , Jielun Yan , Qingyang Zhou , Zhe Wang , Yifan Shi , Jing Wang , Anna Tang . Improving Instrumental Analytical Chemistry Laboratory Teaching: Developing a Bilingual Classroom to Cultivate Innovative Talents. University Chemistry, 2025, 40(7): 83-89. doi: 10.12461/PKU.DXHX202409059
-
[20]
Cuiping Yang , Huiping Ding , Jinpeng Hou , Kai Li , Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087
-
[1]
Metrics
- PDF Downloads(3)
- Abstract views(404)
- HTML views(73)