Citation: Dan Li,  Hui Xin,  Xiaofeng Yi. Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production[J]. University Chemistry, ;2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046 shu

Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production

  • Received Date: 12 December 2023
    Revised Date: 10 January 2024

  • This study outlines the design of a comprehensive chemical experiment to synthesize Ni-based nanocatalysts with varying grain sizes for biofuel production. Ni/CeO2、Ni/CeO2-SiO2and Ni/SiO2 nanomaterials were prepared via a conventional impregnation method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The integrated scientific training process—from catalyst synthesis and structural characterization to performance evaluation—not only cultivate students’ comprehensive experimental skills, but also enhance their research literacy. This experiment aims to illuminate the intrinsic relationship between material structure and function, fostering a curiosity for investigating the unknown in the scientific realm. Moreover, the experiment incorporates a curricular focus on the “energy crisis”, heightening students’ awareness of current energy and environmental challenges, and inspiring a personal commitment to environmental stewardship.
  • 加载中
    1. [1]

    2. [2]

      Gosselink, R. W.; Hollak, S. A. W.; Chang, S. W.; Haveren, J. V.; Jong, K. P. D.; Bitter, J. H.; Es, D. S. V. Chem. Sus. Chem. 2013, 6, 1576.

    3. [3]

      Hermida, L.; Abdullah, A. Z.; Mohamed, A. R. Renew. Sust. Energy Rev. 2015, 42, 1223.

    4. [4]

      Phichitsurathaworn, P.; Choojun, K.; Poo-arporn, Y.; Sooknoi, T. Appl. Catal. A: Gen. 2020, 602, 117644.

    5. [5]

      Remón, J.; Casales, M.; Gracia, J.; Callén, M. S.; Pinilla, J. L.; Suelves, I. Chem. Eng. J. 2021, 405, 126705.

    6. [6]

      Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; Van bokhoven, J. A. Science, 2017, 356, 523.

    7. [7]

      Wang, Z. J.; Chang, H. H.; Zhang, J.; Sun, Z. H.; Wu, Y. L.; Liu, Y. M.; Zhu, Y. F.; He, H. Y.; Cao, Y.; Bao, X. H. Chem. Commun. 2022, 58 (23), 3779.

    8. [8]

      Li, B.; Zhang, B.; Guan, Q.; Chen, S.; Ning, P. Int. J. Hydrog. Energy 2018, 43, 19010.

    9. [9]

      Fu, L.; Li, Y.; Cui, H.; Ba, W.; Liu, Y. Appl. Catal. A: Gen. 2021, 623, 118258.

    10. [10]

      Yan, C.; Li, H.; Ye, Y.; Wu, H.; Cai, F.; Si, R.; Xiao, J.; Miao, S.; Xie, S.; Yang, F.; et al. Energy Environ. Sci. 2018, 11, 1204.

    11. [11]

      Ni, Z.; Djitcheu, X.; Gao, X.; Wang, J.; Liu, H.; Zhang, Q. Sci. Rep. 2022, 12, 5344.

    12. [12]

      Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H. J. Phys. Chem. B 2005, 109, 24380.

    13. [13]

      Zhang, H.; Estudillo-Wong, L. A.; Gao, Y.; Feng, Y.; Alonso-Vante, N. J. Energy Chem. 2021, 59, 615.

    14. [14]

      Zeng, Y.; Wang, H.; Yang, H.; Juan, C.; Li, D.; Wen, X.; Zhang, F.; Zhou, J.; Peng, C.; Hu, C. Chin. J. Catal. 2023, 47, 229.

    15. [15]

      Gao, S.; Li, Y.; Guo, W.; Ding, X.; Zheng, L.; Wu, L.; Yan, H.; Wang, Y. Mol. Catal. 2022, 533, 112766.

    16. [16]

      Jomjaree, T.; Sintuya, P.; Srifa, A.; Koo-amornpattana, W.; Kiatphuengporn, S.; Assabumrungrat, S.; Sudoh, M.; Watanabe, R.; Fukuhara, C.; Ratchahat, S. Catal. Today 2021, 375, 234.

    17. [17]

      Hollinger, G. Appl. Surf. Sci. 1981, 8 (3), 318.

    18. [18]

      Yan, X.; Hu, T.; Liu, P.; Li, S.; Zhao, B.; Zhang, Q.; Jiao, W.; Chen, S.; Wang, P.; Lu, J.; et al. Appl. Catal. B: Environ. 2019, 246, 221.

    19. [19]

      Zhang, B.; Zhang, S.; Liu, B. Appl. Surf. Sci. 2020, 529, 147068.

    20. [20]

      Zhang, Y.; Lu, J.; Zhang, L.; Fu, T.; Zhang, J.; Zhu, X.; Gao, X.; He, D.; Luo, Y.; Dionysiou, D. D.; et al. Appl. Catal. B: Environ. 2022, 309, 121249.

    21. [21]

      Zhang, Z.; Li, J.; Gao, W.; Ma, Y.; Qu, Y. J. Mater. Chem. A 2015, 3 (35), 18074.

    22. [22]

      Zhang, L. J.; Chen, R. H.; Tu, Y.; Gong, X. Y.; Cao, X.; Xu, Q.; Li, Y.; Ye, B. J.; Ye, Y. F.; Zhu, J. F. ACS Catal. 2023, 13 (4), 2202.

    23. [23]

      Cheng, Z.; Shan, H.; Sun, Y.; Zhang, L.; Jiang, H.; Li, C. Appl. Surf. Sci. 2020, 513, 145766.

    24. [24]

      Li, M.; Amari, H.; van Veen, A. C. Appl. Catal. B: Environ. 2018, 239, 27.

    25. [25]

    26. [26]

  • 加载中
    1. [1]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    2. [2]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    3. [3]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    4. [4]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    5. [5]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    6. [6]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    8. [8]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    18. [18]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    19. [19]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    20. [20]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(1)
  • Abstract views(337)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return