Citation: Zitong Chen,  Zipei Su,  Jiangfeng Qian. Aromatic Alkali Metal Reagents: Structures, Properties and Applications[J]. University Chemistry, ;2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054 shu

Aromatic Alkali Metal Reagents: Structures, Properties and Applications

  • Received Date: 16 November 2023
    Revised Date: 1 February 2024

  • Aromatic alkali metal reagents are prepared through the spontaneous reaction between alkali metals and aromatic compounds in aprotic solvents. This reaction involves the transfer of electrons from the alkali metal to the aromatic compound, resulting in the formation of radical anions. The properties of aromatic alkali metal reagents vary depending on the choice of aromatic compounds, alkali metals, and aprotic solvents. These reagents have found extensive applications in fields such as anionic polymerization, chemical prelithiation of electrode materials and ion-intercalation-assisted exfoliation of two-dimensional materials. Despite their promising applications, the introduction of aromatic alkali metal compounds in most basic chemistry textbooks is limited. This article aims to address this gap by providing a comprehensive review of the structure, properties, and recent advances in the application of aromatic alkali metal reagents. By expanding the coverage of these reagents in teaching, it will contribute to broadening students’ understanding of cutting-edge scientific research, enhancing their scientific literacy, and promoting the reform of undergraduate chemistry education.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Armit, J. W.; Robinson, R. Transactions 1925, 127, 1604.

    4. [4]

    5. [5]

      Hückel, E. Zeitschrift für Physik 1931, 70, 204.

    6. [6]

      Tsipis, A. C. Coordin. Chem. Rev. 2014, 272, 1.

    7. [7]

    8. [8]

    9. [9]

      Willstätter, R. Science 1933, 78, 271.

    10. [10]

      Hückel, W.; Bretschneider, H. Justus Liebigs Annalen der Chemie 1939, 540, 157.

    11. [11]

      Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 60, 4090.

    12. [12]

      Slates, R. V.; Szwarc, M. J. Phys. Chem. 2002, 69, 4124.

    13. [13]

      Walczak, M.; Stucky, G. D. J. Organomet. Chem. 1975, 97, 313.

    14. [14]

      Bock, H.; Arad, C.; Näther, C.; Havlas, Z. Chem. Commun. 1995, 2393.

    15. [15]

      Scott, T. A.; Ooro, B. A.; Collins, D. J.; Shatruk, M.; Yakovenko, A.; Dunbar, K. R.; Zhou, H. C. Chem. Commun. 2009, 65.

    16. [16]

      Pennachio, M.; Zhou, Z.; Wei, Z.; Tsybizova, A.; Gershoni-Poranne, R.; Petrukhina, M. A. Organometallics. 2023, 42, 2492.

    17. [17]

      Lipkin, D.; Paul, D. E.; Townsend, J.; Weissman, S. I. Science 1953, 117, 534.

    18. [18]

      Beckett, A.; Porter, G. Transactions of the Faraday Society 1963, 59, 2038.

    19. [19]

      Paul, D. E.; Lipkin, D.; Weissman, S. I. J. Am. Chem. Soc. 2002, 78, 116.

    20. [20]

      Bronsted, J. N. J. Phys. Chem. 1926, 30, 777.

    21. [21]

      Scott, N. D.; Walker, J. F.; Hansley, V. L. J. Am. Chem. Soc. 2002, 58, 2442.

    22. [22]

      Fantin, M.; Lorandi, F.; Gennaro, A.; Isse, A. A.; Matyjaszewski, K. Synthesis 2017, 49, 3311.

    23. [23]

      Darcy, J. W.; Koronkiewicz, B.; Parada, G. A.; Mayer, J. M. Acc. Chem. Res. 2018, 51, 2391.

    24. [24]

      Mai, D. N.; Baxter, R. D. Top. Catal. 2017, 60, 580.

    25. [25]

      Brooks, D. W.; Meyers, E. A.; Sicilio, F.; Nearing, J. C. J. Chem. Educ. 1973, 50, 487.

    26. [26]

      Houle, F. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1978, 100, 3290.

    27. [27]

      Hassan, S. Z.; Tauch, J.; Kas, M.; Nötzold, M.; Carrera, H. L.; Endres, E. S.; Wester, R.; Weidemüller, M. Nat. Commun. 2022, 13, 818.

    28. [28]

      Verma, P.; Truhlar, D. G. Trends in Chemistry 2020, 2, 302.

    29. [29]

      Wentworth, W. E.; Chen, E.; Lovelock, J. E. J. Phys. Chem. 2002, 70, 445.

    30. [30]

      Heathcock, C. H. Science 1981, 214, 395.

    31. [31]

      Claisen, L.; Ponder, A. C. Justus Liebigs Annalen der Chemie 1884, 223, 137.

    32. [32]

      Perkin, W. H. J. Chem. Soc. 1868, 21, 181.

    33. [33]

      Scott, N. D.; Walker, J. F. Preparation of Organic Cyano Compounds. US. Pat. 2171869, 1939.

    34. [34]

      Mundy, B. P.; Bruss, D. R.; Kim, Y. S.; Larsen, R. D.; Warnet, R. J. Tetrahedron Lett. 1985, 26, 3927.

    35. [35]

      Zhu, X. Z.; Mitsui, C.; Tsuji, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 13596.

    36. [36]

      Holy, N. L. Chem. Rev. 1974, 74, 243.

    37. [37]

      Szwarc, M. Nature 1956, 178, 1168.

    38. [38]

    39. [39]

      Hontsu, S.; Nakamori, M.; Kato, N.; Tabata, H.; Ishii, J.; Matsumoto, T.; Kawai, T. Jpn. J. Appl. Phys. 1998, 37, L1169.

    40. [40]

      Shen, Y. F.; Qian, J. F.; Yang, H. X.; Zhong, F. P.; Ai, X. P. Small 2020, 16, 1907602.

    41. [41]

      Liu, M.; Zhang, J.; Guo, S.; Wang, B.; Shen, Y.; Ai, X.; Yang, H.; Qian, J. ACS Appl. Mater. Inter. 2020, 12, 17620.

    42. [42]

      Shen, Y. F.; Shen, X. H.; Yang, M.; Qian, J. F.; Cao, Y. L.; Yang, H. X.; Luo, Y.; Ai, X. P. Adv. Funct. Mater. 2021, 31, 2101181.

    43. [43]

      Liu, M.; Yang, Z.; Shen, Y.; Guo, S.; Zhang, J.; Ai, X.; Yang, H.; Qian, J. J. Mater. Chem. A 2021, 9, 5639.

    44. [44]

      Wu, C.; Hu, J. M.; Ye, L.; Su, Z. P.; Fang, X. L.; Zhu, X. L.; Zhuang, L.; Ai, X. P.; Yang, H. X.; Qian, J. F. ACS Sustainable Chem. Eng. 2021, 9, 16384.

    45. [45]

      Wu, C.; Hu, J. M.; Chen, H. X.; Zhang, C. Y.; Xu, M. L.; Zhuang, L.; Ai, X. P.; Qian, J. F. Energy Storage Mater. 2023, 60, 102803.

    46. [46]

      Wu, C.; Xu, M.; Zhang, C.; Ye, L.; Zhang, K.; Cong, H.; Zhuang, L.; Ai, X.; Yang, H.; Qian, J. Energy Storage Mater. 2023, 55, 154.

    47. [47]

      Wang, Z. Y.; Mi, B. X. Environ. Sci. Technol. 2017, 51, 8229.

    48. [48]

      Qiu, K. Q.; Zou, W. W.; Fang, Z.; Wang, Y. X.; Bell, S.; Zhang, X.; Tian, Z. Q.; Xu, X. Q.; Ji, B. H.; Li, D. C.; et al. ACS Nano 2023, 17, 4716.

    49. [49]

      Zhu, X. L.; Su, Z. P.; Wu, C.; Cong, H. J.; Ai, X. P.; Yang, H. X.; Qian, J. F. Nano Lett. 2022, 22, 2956.

  • 加载中
    1. [1]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    2. [2]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    3. [3]

      Qiwen Chen Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136

    4. [4]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    6. [6]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    7. [7]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    10. [10]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    14. [14]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    15. [15]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    16. [16]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    17. [17]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    18. [18]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    19. [19]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    20. [20]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

Metrics
  • PDF Downloads(0)
  • Abstract views(372)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return