Citation: Yong Shu,  Xing Chen,  Sai Duan,  Rongzhen Liao. How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2[J]. University Chemistry, ;2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102 shu

How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2

  • Received Date: 25 October 2023
    Revised Date: 9 January 2024

  • The equilibrium nuclear distance is of paramount importance in the study of diatomic molecule properties. It can be obtained through spectroscopic experiments and quantum chemical calculations. The hydrogen molecule (H2) serves as the simplest diatomic molecule, making it an ideal example to illustrate the determination of equilibrium bond distance in homonuclear diatomic molecules. This paper introduces various spectroscopic experimental methods for measuring the equilibrium bond distance, including Raman spectroscopy, electric-field induced dipole spectroscopy, and quadrupole transition spectroscopy. Furthermore, the historical development of solving the Schrödinger equation for the hydrogen molecule, with specific emphasis on the equilibrium bond distance and bond dissociation energy, is discussed.
  • 加载中
    1. [1]

      McQuarrie, D. A.; Simon, J. D. Physical Chemistry: A Molecular Approach; University Science Books: Sausalito, USA, 1997; pp. 157-179, 495-537.

    2. [2]

      Claron Hoskins, L. J. Chem. Educ. 1975, 52, 568.

    3. [3]

      Rasetti, F. Phys. Rev. 1929, 34, 367.

    4. [4]

      Stoicheff, B. P. Can. J. Phys. 2011, 35, 730.

    5. [5]

      Crawford, M. F.; Dagg, I. R. Phys. Rev. 1953, 91, 1569.

    6. [6]

      Condon, E. U. Phys. Rev. 1932, 41, 759.

    7. [7]

      Herzberg, G. Can. J. Res. 1950, 28a, 144.

    8. [8]

      Herzberg, G. Nature 1949, 163, 170.

    9. [9]

      Terhune, R. W.; Peters, C. W. J. Mol. Spectrosc. 1959, 3, 138.

    10. [10]

      Rank, D. H.; Rao, B. S.; Slomba, A. F.; Wiggins, T. A. J. Opt. Soc. Am. 1962, 52, 1004.

    11. [11]

      Foltz, J. V.; Rank, D. H.; Wiggins, T. A. J. Mol. Spectrosc. 1966, 21, 203.

    12. [12]

      Brannon, P. J.; Church, C. H.; Peters, C. W. J. Mol. Spectrosc. 1968, 27, 44.

    13. [13]

      Herzberg, G. J. Mol. Spectrosc. 1970, 33, 147.

    14. [14]

      Liu, J.; Salumbides, E. J.; Hollenstein, U.; Koelemeij, J. C. J.; Eikema, K. S. E.; Ubachs, W.; Merkt, F. J. Chem. Phys. 2009, 130, 174306.

    15. [15]

    16. [16]

      Heitler, W.; London, F. Z. Physik 1927, 44, 455.

    17. [17]

      Sugiura, Y. Z. Physik 1927, 44, 190.

    18. [18]

      Wang, S. C. Phys. Rev. 1928, 31, 579.

    19. [19]

      James, H. M.; Coolidge, A. S. J. Chem. Phys. 1933, 1, 825.

    20. [20]

    21. [21]

      Coulson, C. A. Trans. Faraday Soc. 1937, 33, 1497.

    22. [22]

    23. [23]

      Kolos, W.; Roothaan, C. C. J. Rev. Mod. Phys. 1960, 32, 219.

    24. [24]

      Levine, I. N. Quantum Chemistry, 5th ed.; Prentice-Hall, Inc.: New York, USA, 2000; pp. 426-436.

    25. [25]

      Kolos, W.; Wolniewicz, L. J. Chem. Phys. 1964, 41, 3663.

    26. [26]

      Kolos, W.; Wolniewicz, L. J. Chem. Phys. 1968, 49, 404.

    27. [27]

      Kolos, W.; Wolniewicz, L. J. Mol. Spectrosc. 1975, 54, 303.

    28. [28]

      Bishop, D. M.; Cheung, L. M. Phys. Rev. A 1978, 18, 1846.

    29. [29]

      Piszczatowski, K.; Łach, G.; Przybytek, M.; Komasa, J.; Pachucki, K.; Jeziorski, B. J. Chem. Theory Comput. 2009, 5, 3039.

    30. [30]

    31. [31]

      Wolniewicz, L. J. Chem. Phys. 1983, 78, 6173.

    32. [32]

      Wolniewic, L. J. Chem. Phys. 1995, 103, 1792.

  • 加载中
    1. [1]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    2. [2]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    3. [3]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    4. [4]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    5. [5]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    6. [6]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    7. [7]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    8. [8]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    9. [9]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    10. [10]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    11. [11]

      Wen Shi Jiuxing Jiang . 化学中的数学方法课程建设探索. University Chemistry, 2025, 40(6): 48-53. doi: 10.12461/PKU.DXHX202408088

    12. [12]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    13. [13]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    14. [14]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    15. [15]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    16. [16]

      Xin Hua Songqin Liu . Research on Teaching Practice of Spectral Analytical Chemistry Based on Thematic Discussion. University Chemistry, 2025, 40(7): 106-111. doi: 10.12461/PKU.DXHX202408043

    17. [17]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    18. [18]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    19. [19]

      Ling Li Guocheng Wang . 知识图谱与AI助教在无机化学混合式教学中的初步探索——以“沉淀溶解平衡”的教学为例. University Chemistry, 2025, 40(6): 1-8. doi: 10.12461/PKU.DXHX202407063

    20. [20]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

Metrics
  • PDF Downloads(3)
  • Abstract views(430)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return