Citation:
Xue Qi, Zhihui Wen, Xiaohang Qiu. Design of Chemistry Popular Science Courses for Primary and Secondary School Students across Various Ages under the “Double Reduction” Policy: A Case Study of Nankai University’s Chemistry Science Popularization Base[J]. University Chemistry,
;2024, 39(9): 392-400.
doi:
10.3866/PKU.DXHX202310070
-
The “double reduction” policy, implemented in 2021, underscores the importance of leveraging university resources for enhanced after-school education. In response, Nankai University's Chemistry Science Base integrates university expertise and resources, optimizing team design. This involves active participation from high-level talents, experimental center teachers, and undergraduates in crafting after-school courses. Adopting a flexible “come in, go out” approach, we combine lectures, teaching, experiments, and research to deliver chemistry popular science courses tailored for primary and secondary school students of varying ages. This initiative aims to develop a series of targeted, content-rich, and characteristic chemistry popular science courses emblematic of Nankai Chemistry.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[1]
-
-
-
[1]
Weitai Wu , Laiying Zhang , Yuan Chun , Liang Qiao , Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031
-
[2]
Yucheng Jiang , Qi Zhang , Lingling Wei , Dong Xue . Curriculum Design for “Chemistry & Social Progress” Based on Thematic Lectures. University Chemistry, 2024, 39(4): 251-254. doi: 10.3866/PKU.DXHX202309103
-
[3]
Qin Kuang , Lansun Zheng , Yaxian Zhu . Overall Design of the Inorganic Chemistry Course for the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 14-21. doi: 10.12461/PKU.DXHX202408071
-
[4]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[5]
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
-
[6]
Yuhang Jiang , Weijie Liu , Jiaqi Cai , Jiayue Chen , Yanping Ren , Pingping Wu , Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054
-
[7]
Yan Xiao , Shuling Li , Yifan Li , Jianing Fan , Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025
-
[8]
Yidan Jing , Xiaomin Zhang , Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146
-
[9]
Wei Gao , Jinyue Yang , Wenwei Zhang . Practice and Exploration of Promoting the “Double Reduction” Work with Popular Science Resources in Universities. University Chemistry, 2024, 39(9): 385-391. doi: 10.3866/PKU.DXHX202311008
-
[10]
Qin Li , Kexin Yang , Qinglin Yang , Xiangjin Zhu , Xiaole Han , Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059
-
[11]
Hongyan Feng , Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087
-
[12]
Qin Li , Ziyao Jia , Ye Chen , Mingze Ma , Lin Li , Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035
-
[13]
Zongpei Zhang , Yanyang Li , Yanan Si , Kai Li , Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041
-
[14]
Lisen Sun , Yongmei Hao , Zhen Huang , Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063
-
[15]
Qiaowei Li , Huadong Wang , Junli Hou . Exploration and Reflection on Graduate Curriculum Development under the New Paradigm of Chemistry Advancement. University Chemistry, 2024, 39(6): 50-54. doi: 10.3866/PKU.DXHX202401044
-
[16]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[17]
Peifeng Su , Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087
-
[18]
Xiangli Wang , Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092
-
[19]
Guangming Yang , Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089
-
[20]
Chengpeng Liu , Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(74)
- HTML views(0)