Citation:
Jiajia Li, Xiangyu Zhang, Zhihan Yuan, Zhengyang Qian, Jian Zhu. 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization[J]. University Chemistry,
;2024, 39(5): 11-19.
doi:
10.3866/PKU.DXHX202309073
-
This experiment addresses the challenge of understanding the abstract concept of “living” in living radical polymerization within the undergraduate teaching of polymer chemistry course. We conducted a 3D printing experiment using photo-induced reversible addition-fragmentation chain transfer (RAFT) polymerization. Initially, we synthesized O-(ethyl)-S-(2-propyl ethanoate thio) xanthate (EXEP) under optimized conditions. Subsequently, 3D printing was performed with commercial photosensitive resin under conditions with and without EXEP. The printed structures were then subjected to post-modification with a fluorescent monomer, and a comparative experiment on polymer welding was conducted. By analyzing and comparing the experimental results, we aimed to visually demonstrate the mechanism of living radical polymerization and its impact on post-functionalization. This experiment seamlessly integrates foundational theory into an engaging practical context. It is characterized by its reasonable duration, simplicity in operation, significant outcomes, and alignment with basic requirements for undergraduate teaching experiments. Furthermore, it contributes to enhancing students’ comprehensive analytical abilities, sparking their interest in deeper research, and cultivating their innovative awareness and extension capabilities.
-
-
-
[1]
Szwarc, M. Nature 1956, 178, 1168.
-
[2]
Grubbs, R. B.; Grubbs, R. H. Macromolecules 2017, 50(18), 6979.
-
[3]
Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Gordon, K. H. Macromolecules 1993, 26(11), 2987.
-
[4]
Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28(5), 1721.
-
[5]
Wang, J. S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117(20), 5614.
-
[6]
Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Tam, P. T. L.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; et al. Macromolecules 1998, 31(16), 5559.
-
[7]
Perrier, S. Macromolecules 2017, 50(19), 7433.
-
[8]
-
[9]
-
[10]
Ligon, S. C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Chem. Rev. 2017, 117(15), 10212.
-
[11]
Corrigan, N.; Yeow, J.; Judzewitsch, P.; Xu, J.; Boyer, C. Angew. Chem. Int. Ed. 2019, 58(16), 5170.
-
[12]
Bagheri, A.; Engel, K. E.; Bainbridge, C. M. A.; Xu, J. T.; Boyer, C.; Jin, J. Polym. Chem. 2020, 11, 641.
-
[13]
Zhao, B.; Li, J.; Li, G.; Yang, X.; Lu, S.; Pan, X.; Zhu, J. Small 2023, 2207637.
-
[14]
Zhao, B.; Li, J.; Li, Z.; Lin, X.; Pan, X.; Zhang, Z.; Zhu, J. Macromolecules 2022, 55(16), 7181.
-
[15]
Zhao, B.; Li, J.; Xiu, Y.; Pan, X.; Zhang, Z.; Zhu, J. Macromolecules 2022, 55(5), 1620.
-
[16]
Bagheri, A. Macromolecules 2023, 56(5), 1778.
-
[1]
-
-
-
[1]
Yuexi Guo , Zhaoyang Li , Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067
-
[2]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[3]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[4]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[5]
Chengcheng Si , Linshan Chai , Huiyuan Liu , Liye Sun , Shijian Cheng , Hailing Li , Wenyun Wang , Fang Liu , Qing Feng , Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069
-
[6]
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
-
[7]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[8]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[9]
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
-
[10]
Jingwen Wang , Peizhang Zhao , Mengmeng Li , Jun Li , Yunfeng Lin . Remedying infectious bone defects via 3D printing technology. Chinese Chemical Letters, 2025, 36(9): 110686-. doi: 10.1016/j.cclet.2024.110686
-
[11]
Qi Zhang , Bin Han , Yucheng Jin , Mingrun Li , Enhui Zhang , Jianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330
-
[12]
Tongyan Yu , Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070
-
[13]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[14]
Chengmin Hu , Pingxuan Liu , Ziyang Song , Yaokang Lv , Hui Duan , Li Xie , Ling Miao , Mingxian Liu , Lihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381
-
[15]
Run Chai , Qiujie Wu , Yongchao Liu , Xiaohui Song , Xuyong Feng , Yi Sun , Hongfa Xiang . A 3D dual layer host with enhanced sodiophilicity as stable anode for high-energy sodium metal batteries. Chinese Chemical Letters, 2025, 36(6): 110007-. doi: 10.1016/j.cclet.2024.110007
-
[16]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[17]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[18]
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
-
[19]
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
-
[20]
Yi Zhu , Jingyan Zhang , Yuchao Zhang , Ying Chen , Guanghui An , Ren Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(366)
- HTML views(32)