Citation: Rui Li,  Jiayu Zhang,  Anyang Li. Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules[J]. University Chemistry, ;2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051 shu

Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules

  • Corresponding author: Anyang Li, liay@nwu.edu.cn
  • Received Date: 10 August 2023

  • Chemical bonding is one of the core concepts in the whole field of chemistry and provides a very effective way of communication. It must be clear that chemical bonds are not real, they are artificially abstracted concepts. To accurately describe chemical bonding, various models or theories have been proposed throughout history. The most widely used models are the electron-pair bonding model and hybrid orbital theory. However, the rules of thumb have their limitations, as evident in the explanation of hypervalent molecules. We suggest that in teaching, hypervalent molecules should be used as examples to explicitly point out the shortcomings of empirical rules in describing chemical bonding to younger students. In another hand, molecular orbital theory or modern valence bond theory can be used on bonding analysis for senior students. It is expected that students maintain an open-minded attitude towards the behavior of chemical bonding and cultivate spirit of scientific inquiry.
  • 加载中
    1. [1]

      Lewis, G. N. J. Am. Chem. Soc. 1916, 38 (4), 762.

    2. [2]

      Lewis, G. N. Valence and the Structure of Atoms and Molecules; The Chemical Catalog Company, Inc.: New York, NY, USA, 1923.

    3. [3]

      Langmuir, I. J. Am. Chem. Soc. 1919,41 (6), 868.

    4. [4]

      Pauling, L. The Nature of the Chemical Bond, 3st ed.; Cornell University Press: Ithaca, NY, USA, 1960.

    5. [5]

      Jensen, W. B. J. Chem. Edu. 2006,83 (12), 1751.

    6. [6]

      Gillespie, R. J.; Silvi, B. Coord. Chem. Rev. 2002, 233‒234, 53.

    7. [7]

    8. [8]

      Norman, N. C.; Pringle, P. G. Chem 2022,4 (4), 1226.

    9. [9]

      Hach, R. J.; Rundle, R. E. J. Am. Chem. Soc. 1951, 73 (9), 4321.

    10. [10]

      Pimentel, G. C. J. Chem. Phys. 1951, 19 (4), 446.

    11. [11]

      Kutzelnigg, W. Angew. Chem, Int. Ed. 1984, 23 (4), 272.

    12. [12]

      Reed, A. E.; Weinhold, F. J. Am. Chem. Soc. 1986, 108 (13), 3586.

    13. [13]

      Magnusson, E. J. Am. Chem. Soc. 1990, 112 (22), 7940.

    14. [14]

      Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112 (4), 1434.

    15. [15]

      Shaik, S.; Danovich, D.; Galbraith, J. M.; Braïda, B.; Wu, W.; Hiberty, P. C. Angew. Chem. Int. Ed. 2020, 59 (3), 984.

    16. [16]

      Braïda, B.; Ribeyre, T.; Hiberty, P. C. Chem. Eur. J. 2014, 20 (31), 9643.

    17. [17]

      Ball, P. Nature 2011,469 (7328), 26.

    18. [18]

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    3. [3]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    4. [4]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    7. [7]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    8. [8]

      Zhen Shen Yi Wang Chen Lin Kin Shing Chan . 南京大学化学生物学专业本科生有机化学英文教学经验. University Chemistry, 2025, 40(6): 43-47. doi: 10.12461/PKU.DXHX202407083

    9. [9]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    10. [10]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    11. [11]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    12. [12]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    13. [13]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    14. [14]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    17. [17]

      Jianquan Liu Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082

    18. [18]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    19. [19]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    20. [20]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

Metrics
  • PDF Downloads(1)
  • Abstract views(772)
  • HTML views(309)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return