Citation: Xi Xu,  Chaokai Zhu,  Leiqing Cao,  Zhuozhao Wu,  Cao Guan. Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development[J]. University Chemistry, ;2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039 shu

Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development

  • Corresponding author: Xi Xu,  Cao Guan, 
  • Received Date: 7 August 2023

  • Experiential education is widely recognized as an effective teaching method for nurturing students’ problem-solving abilities and fostering innovative thinking through hands-on activities. Furthermore, the field of 3D printing of alloy materials has garnered significant attention in the realm of electrocatalysis. This paper aims to synergize experimental education with 3D printing of alloys, exploring its impact on students and educational outcomes. Initially, the paper introduces the importance and role of experimental education and the characteristics and potential applications of alloy materials. Subsequently, the potential utilization of 3D printing technology in the fabrication of alloys is discussed. To enhance students’ engagement, learning motivation, and scientific literacy, they actively participate in designing and conducting experiments. The primary objective of this research is to provide novel ideas and methodologies for educational practices, cultivating students’ scientific thinking and practical abilities. Additionally, it aims to foster a greater number of innovative talents in the field of materials science and engineering.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Lee, C.Y.; Taylor, A. C.; Nattestad, A.; Beirne, S.; Wallace, G. G. Joule 2019, 3, 1835.

    6. [6]

      Jakus, A. E.; Taylor, S. L.; Geisendorfer, N. R.; Dunand, D. C.; Shah, R. N. Adv. Funct. Mater. 2015, 25, 6985.

    7. [7]

      Tubío, C. R.; Azuaje, J.; Escalante, L.; Coelho, A.; Guitián, F.; Sotelo, E.; Gil, A. J. Catal. 2016, 334, 110.

    8. [8]

      Thakkar, H.; Eastman, S.; Al-Mamoori, A.; Hajari, A.; Rownaghi, A. A.; Rezaei, F. ACS Appl. Mater. Interfaces 2017,9 (8), 7489.

    9. [9]

      Browne, M. P.; Redondo, E.; Pumera, M. Chem. Rev. 2020, 120 (5), 2783.

    10. [10]

      Huang, X.; Chang, S.; Lee, W. S. V.; Ding, J.; Xue, J. M. J. Mater. Chem. A 2017, 5, 18176.

    11. [11]

      Ambrosi, A.; Pumera, M. Adv. Funct. Mater. 2018, 28, 1700655.

    12. [12]

      Kim, S.; Ahn, C.; Cho, Y.; Hyun, G.; Jeon, S.; Park, J. H. Nano Energy 2018, 54, 184.

    13. [13]

      Zhang, F.; Ji, R. J.; Liu, Y. H.; Pan, Y.; Cai, B. P.; Li, Z. J.; Liu, Z.; Lu, S. C.; Wang, Y. T.; Jin, H.; et al. Appl. Catal. B 2020, 276, 119141.

    14. [14]

      García-Moreno, F. Materials 2016, 9 (2), 85.

    15. [15]

      Stern, L. A.; Feng, L.; Song, F.; Hu, X. Energy Environ. Sci. 2015, 8, 2347.

    16. [16]

      Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. ChemCatChem 2016, 8, 106.

    17. [17]

      Patel, D. K.; Sakhaei, A. H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S. Adv. Mater. 2017,29, 1606000.

    18. [18]

      Gardan, J.; Makke, A.; Recho, N. Procedia Struct. Integr. 2016,2, 144.

    19. [19]

      Takahashi, K.; Setoyama, J. Electron. Commun. Jpn. 2000, 83, 56.

    20. [20]

      Zhou, Z.; Pei, Z. X.; Wei, L.; Zhao, S. L.; Jian, X.; Chen, Y. Energy Environ. Sci. 2020, 13, 3185.

    21. [21]

      Li, Y. M.; Li, C.; Zhang, X.; Wang, Y. Q.; Tan, Y. H.; Chang, S.; Chen, Z.; Fu, G. W.; Kou, Z. K.; Stefan, A.; et al.; Appl. Mater. Today 2022, 29, 101553.

    22. [22]

      Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M.; Myung, C. W.; Thangavel, P.; Kim, K. S. Adv. Energy Mater. 2019, 9, 1900624.

    23. [23]

      Li, Y. J.; Zhai, J.; Zhao, L. C.; Chen, J. P.; Shang, X. N.; Song, C. M.; Chen, J. C.; Liu, S.; Meng, F. B. J. Solid State Chem. 2019, 276, 19.

    24. [24]

      Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Nat. Mater. 2012, 11, 963.

    25. [25]

      Zou, X. X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148.

    26. [26]

      McCrory, C. C.; Jung, L. S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137, 4347.

    27. [27]

      Hu, F.; Zhu, S. L.; Chen, S. M.; Li, Y.; Ma, L.; Wu, T. P.; Zhang, Y.; Wang, C. M.; Liu, C. C.; Yang, X. J.; et al. Adv. Mater. 2017, 29, 1606570.

    28. [28]

      Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Sci. Rep. 2015, 5, 13801.

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    7. [7]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    8. [8]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    9. [9]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    12. [12]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    13. [13]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    14. [14]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    15. [15]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    18. [18]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    19. [19]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    20. [20]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(0)
  • Abstract views(265)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return