Citation:
Xi Xu, Chaokai Zhu, Leiqing Cao, Zhuozhao Wu, Cao Guan. Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development[J]. University Chemistry,
;2024, 39(2): 347-357.
doi:
10.3866/PKU.DXHX202308039
-
Experiential education is widely recognized as an effective teaching method for nurturing students’ problem-solving abilities and fostering innovative thinking through hands-on activities. Furthermore, the field of 3D printing of alloy materials has garnered significant attention in the realm of electrocatalysis. This paper aims to synergize experimental education with 3D printing of alloys, exploring its impact on students and educational outcomes. Initially, the paper introduces the importance and role of experimental education and the characteristics and potential applications of alloy materials. Subsequently, the potential utilization of 3D printing technology in the fabrication of alloys is discussed. To enhance students’ engagement, learning motivation, and scientific literacy, they actively participate in designing and conducting experiments. The primary objective of this research is to provide novel ideas and methodologies for educational practices, cultivating students’ scientific thinking and practical abilities. Additionally, it aims to foster a greater number of innovative talents in the field of materials science and engineering.
-
Keywords:
- Experiential education,
- Alloy,
- Electrocatalysis,
- 3D printing
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
Lee, C.Y.; Taylor, A. C.; Nattestad, A.; Beirne, S.; Wallace, G. G. Joule 2019, 3, 1835.
-
[6]
Jakus, A. E.; Taylor, S. L.; Geisendorfer, N. R.; Dunand, D. C.; Shah, R. N. Adv. Funct. Mater. 2015, 25, 6985.
-
[7]
Tubío, C. R.; Azuaje, J.; Escalante, L.; Coelho, A.; Guitián, F.; Sotelo, E.; Gil, A. J. Catal. 2016, 334, 110.
-
[8]
Thakkar, H.; Eastman, S.; Al-Mamoori, A.; Hajari, A.; Rownaghi, A. A.; Rezaei, F. ACS Appl. Mater. Interfaces 2017,9 (8), 7489.
-
[9]
Browne, M. P.; Redondo, E.; Pumera, M. Chem. Rev. 2020, 120 (5), 2783.
-
[10]
Huang, X.; Chang, S.; Lee, W. S. V.; Ding, J.; Xue, J. M. J. Mater. Chem. A 2017, 5, 18176.
-
[11]
Ambrosi, A.; Pumera, M. Adv. Funct. Mater. 2018, 28, 1700655.
-
[12]
Kim, S.; Ahn, C.; Cho, Y.; Hyun, G.; Jeon, S.; Park, J. H. Nano Energy 2018, 54, 184.
-
[13]
Zhang, F.; Ji, R. J.; Liu, Y. H.; Pan, Y.; Cai, B. P.; Li, Z. J.; Liu, Z.; Lu, S. C.; Wang, Y. T.; Jin, H.; et al. Appl. Catal. B 2020, 276, 119141.
-
[14]
García-Moreno, F. Materials 2016, 9 (2), 85.
-
[15]
Stern, L. A.; Feng, L.; Song, F.; Hu, X. Energy Environ. Sci. 2015, 8, 2347.
-
[16]
Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. ChemCatChem 2016, 8, 106.
-
[17]
Patel, D. K.; Sakhaei, A. H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S. Adv. Mater. 2017,29, 1606000.
-
[18]
Gardan, J.; Makke, A.; Recho, N. Procedia Struct. Integr. 2016,2, 144.
-
[19]
Takahashi, K.; Setoyama, J. Electron. Commun. Jpn. 2000, 83, 56.
-
[20]
Zhou, Z.; Pei, Z. X.; Wei, L.; Zhao, S. L.; Jian, X.; Chen, Y. Energy Environ. Sci. 2020, 13, 3185.
-
[21]
Li, Y. M.; Li, C.; Zhang, X.; Wang, Y. Q.; Tan, Y. H.; Chang, S.; Chen, Z.; Fu, G. W.; Kou, Z. K.; Stefan, A.; et al.; Appl. Mater. Today 2022, 29, 101553.
-
[22]
Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M.; Myung, C. W.; Thangavel, P.; Kim, K. S. Adv. Energy Mater. 2019, 9, 1900624.
-
[23]
Li, Y. J.; Zhai, J.; Zhao, L. C.; Chen, J. P.; Shang, X. N.; Song, C. M.; Chen, J. C.; Liu, S.; Meng, F. B. J. Solid State Chem. 2019, 276, 19.
-
[24]
Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Nat. Mater. 2012, 11, 963.
-
[25]
Zou, X. X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148.
-
[26]
McCrory, C. C.; Jung, L. S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137, 4347.
-
[27]
Hu, F.; Zhu, S. L.; Chen, S. M.; Li, Y.; Ma, L.; Wu, T. P.; Zhang, Y.; Wang, C. M.; Liu, C. C.; Yang, X. J.; et al. Adv. Mater. 2017, 29, 1606570.
-
[28]
Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Sci. Rep. 2015, 5, 13801.
-
[1]
-
-
-
[1]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[2]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[3]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[4]
Yuexi Guo , Zhaoyang Li , Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067
-
[5]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[6]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[7]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[8]
Chengcheng Si , Linshan Chai , Huiyuan Liu , Liye Sun , Shijian Cheng , Hailing Li , Wenyun Wang , Fang Liu , Qing Feng , Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069
-
[9]
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
-
[10]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[11]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[12]
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
-
[13]
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
-
[14]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[15]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[16]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[17]
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
-
[18]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[19]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[20]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(265)
- HTML views(14)