Citation: Rui Yan,  Hu Chen,  Ming Zhao. C—C Cross Coupling Reaction Based on Olefinic C-H Bond Activation[J]. University Chemistry, ;2024, 39(1): 87-94. doi: 10.3866/PKU.DXHX202306052 shu

C—C Cross Coupling Reaction Based on Olefinic C-H Bond Activation

  • Corresponding author: Ming Zhao, zhaomnwu@126.com
  • Received Date: 27 June 2023

  • Olefins are a very important class of compounds, which can be transformed to various complex organic molecules through a series of transformations. In this paper, C-C cross coupling reaction based on olefinic C-H bond activation is described in detail. Based on the activation of C-H bonds, C-C bonds are constructed through C-C cross coupling reaction by transition metal catalysts such as Rh, Pd and Co. This introduction of olefinic C-H bond activation can enrich and expand the knowledge of olefins in organic chemistry courses, and it is also helpful for students to understand the forefront of organic chemistry development, stimulate their learning enthusiasm and initiative, and cultivate their scientific research literacy.
  • 加载中
    1. [1]

    2. [2]

      Sigman, M. S.; Werner, E. W. Acc. Chem. Res. 2012, 45, 874.

    3. [3]

      Colby, D. A.; Bergman, R. G.; Ellman, J. A.; Chem. Rev. 2010, 110, 624.

    4. [4]

      Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814.

    5. [5]

      Gung, B. W.; Kumi, G. J. Org. Chem. 2004, 69, 3488.

    6. [6]

      Fontana, A.; d’lppolito, G.; D’Souza, L.; Mollo, E.; Parameswaram, P. S.; Cimino, G. J. Nat. Prod. 2001, 64, 131.

    7. [7]

      Kong, J. R.; Ngai, M. Y.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 718.

    8. [8]

      Miller, K. M.; Luanphaisarnnont, T.; Molinaro, C.; Jamison, T. F; J. Am. Chem. Soc. 2004, 126, 4130.

    9. [9]

      Finkbeiner, P.; Kloeckner, U.; Nachtsheim, B. J. Angew. Chem. Int. Ed. 2015, 54, 4949.

    10. [10]

      Caspers, L. D.; Finkbeiner, P.; Nachtsheim, B. J. Chem. Eur. J. 2017, 23, 2748.

    11. [11]

      Feng, C.; Feng, D.; Luo, Y.; Loh, T. P. Org. Lett. 2014, 16, 5956.

    12. [12]

      Xu, Y.; Zhang, Q.; He, T.; Meng, F.; Loh, T. P. Adv. Synth. Catal. 2014, 356, 1539.

    13. [13]

      Negishi, E. Angew. Chem. Int. Ed. 2011, 50, 6738.

    14. [14]

      Kuttruff, C. A.; Geiger, S.; Cakmak, M.; Mayer, P.; Trauner, D. Org. Lett. 2012, 14, 1070.

    15. [15]

      Hubert, P.; Seibel, E.; Beemelmanns, C.; Campagne, J.-M.; Figueiredo, R. M. Adv. Synth. Catal. 2020, 362, 5532.

    16. [16]

      Soengas, R. G.; Rodríguez-Solla, H. Molecules 2021, 26, 249.

    17. [17]

      Wen, Z.-K.; Xu, Y.-H.; Loh, T.-P. Chem. Sci. 2013, 4, 4520.

    18. [18]

      Zhong, X.-M.; Cheng, G.-J.; Chen, P.; Zhang, X.; Wu, Y.-D. Org. Lett. 2016, 18, 5240.

    19. [19]

      Zhang, X.; Wang, M.; Zhang, M.-X.; Xu, Y.-H.; Loh, T.-P. Org. Lett. 2013, 15, 5531.

    20. [20]

      Xu, Y.-H.; Lu, J.; Loh, T.-P. J. Am. Chem. Soc. 2009, 131, 1372.

    21. [21]

      Xu, Y.-H.; Wang, W.-J.; Wen, Z.-K.; Hartley, J. J.; Loh, T.-P. Tetrahedron Lett. 2010, 51, 3504.

    22. [22]

      Zhang, Y.; Cui, Z.; Li, Z.; Liu, Z.-Q. Org. Lett. 2012, 14, 1838.

    23. [23]

      Boultadakis-Arapinis, M.; Hopkinson, M. N.; Glorius, F. Org. Lett. 2014, 16, 1630.

    24. [24]

      Liang, Q.-J.; Yang, C.; Meng, F.-F.; Jiang, B.; Xu, Y.-H.; Loh, T.-P. Angew. Chem. Int. Ed. 2017, 56, 5091.

    25. [25]

      Misha, N. K.; Sharma, S.; Park, J.; Han, S.; Kim, I. S. ACS Catal. 2017, 7, 2821.

    26. [26]

      Gensch, T.; Vásquez-Céspedes, S.; Yu, D.-G.; Glorius, F. Org. Lett. 2015, 17, 3714.

    27. [27]

      Kim, M.; Han, S. H.; Kim, I. S. Chem. Commun. 2014, 50, 11303.

    28. [28]

      Wu, X.; Ji, H. Org. Chem. 2018, 83, 12094.

  • 加载中
    1. [1]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    2. [2]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    5. [5]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    6. [6]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    8. [8]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    9. [9]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    11. [11]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    12. [12]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    13. [13]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    20. [20]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(9)
  • Abstract views(1081)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return