Citation: Lei Shi,  Ziye Zhan,  Zhiyou Yu. The Twisted Amides: Structures and Functions[J]. University Chemistry, ;2024, 39(1): 111-118. doi: 10.3866/PKU.DXHX202306039 shu

The Twisted Amides: Structures and Functions

  • Corresponding author: Lei Shi, lshi@hit.edu.cn
  • Received Date: 14 June 2023

  • Amides, as nitrogen-containing compounds with unique physicochemical properties and biological activities, have demonstrated broad application prospects in fields such as medicine and materials. Particularly, compared with the vast majority of traditional amides in which the intramolecular p-π conjugation effects lead to a planar structure, the twisted amides, however, present distortions of the amide bond from planarity, thus resulting conformational and electronic modifications such as amide bond twist and nitrogen pyramidalization. The bond distortion of twisted amide is typically defined by the Winkler-Dunitz distortion parameters twist angle (τ) and pyramidalization parameters (χN). The former describes the magnitude of rotation around the N-C(O) bond while the later describes pyramidalization at nitrogen and pyramidalization at carbon. The values of τ=40° and χN=40° are considered as threshold values that allow for unique reactivity of the twist amide bond. This article introduces the unique structure and reactivity of these compounds, focusing on cyclic twisted amides and acyclic twisted amides, based on the range of τ > 40° and χN > 40°.
  • 加载中
    1. [1]

      Edison, A. S. Nat. Struct. Mol. Biol. 2001, 8, 201.

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Bentley, R. J. Chem. Educ. 2004, 81, 1462.

    6. [6]

      Winkler, F. K.; Dunitz, J. D. J. Mol. Biol. 1971, 59, 169.

    7. [7]

      Greenberg, A.; Moore, D. T.; Dubois, T. D. J. Am. Chem. Soc. 1996, 118, 8658.

    8. [8]

      Lukeš, R. Collect. Czech. Chem. Commun. 1938, 10, 148.

    9. [9]

      Szostak, M.; Aubé J. Chem. Rev. 2013, 113, 5701.

    10. [10]

      Szostak, M.; Aubé J. Org. Biomol. Chem. 2011, 9, 27.

    11. [11]

      Somayaji, V.; Brown, R. S. J. Am. Chem. Soc. 1987, 109, 4738.

    12. [12]

      Tani, K.; Stoltz, B. M. Nature 2006, 441, 731.

    13. [13]

      Ly, T.; Krout, M.; Pham, D. K.; Tani, K.; Stoltz, B. M.; Julian, R. R. J. Am. Chem. Soc. 2007, 129, 1864.

    14. [14]

      Kirby, A. J.; Komarov, I. V.; Feeder, N. J. Chem. Soc., Perkin Trans. 2 2001, 522.

    15. [15]

      Kirby, A. J.; Komarov, I. V.; Feeder, N. J. Am. Chem. Soc. 1998, 120, 7101.

    16. [16]

      Szostak, R.; Aubé, J.; Szostak, M. Chem. Commun. 2015, 51, 6395.

    17. [17]

      Szostak, R.; Aubé, J.; Szostak, M. J. Org. Chem. 2015, 80, 7905.

    18. [18]

      Ratmanova, N. K.; Andreev, I. A.; Leontiev, A. V.; Momotova, D.; Novoselov, A. M.; Ivanova, O. A.; Trushkov, I. V. Tetrahedron 2020, 76, 131031.

    19. [19]

      Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556.

    20. [20]

      Meng, G.; Zhang, J.; Szostak, M. Chem. Rev. 2021, 121, 12746.

    21. [21]

      Yamada, S. J. Org. Chem. 1996, 61, 941.

    22. [22]

      Yamada, S. Angew. Chem., Int. Ed. 1993, 32, 1083.

    23. [23]

      Pace, V.; Holzer, W.; Meng, G.; Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. Chem. Eur. J. 2016, 22, 14494.

    24. [24]

      Otani, Y.; Nagae, O.; Naruse, Y.; Inagaki, S.; Ohno, M.; Yamaguchi, K.; Yamamoto, G.; Uchiyama, M.; Ohwada, T. J. Am. Chem. Soc. 2003, 125, 15191.

    25. [25]

      Otani, Y.; Park, S.; Ohwada, T. Chirality 2020, 32, 790.

    26. [26]

      Takezawa, H.; Shitozawa, K.; Fujita, M. Nat. Chem. 2020, 12, 574.

    27. [27]

      Kirby, A. J.; Komarov, I. V.; Feeder, N. J. Chem. Soc., Perkin Trans. 2 2001, 522.

    28. [28]

      Kirby, A. J.; Komarov, I. V.; Feeder, N. J. Am. Chem. Soc. 1998, 120, 7101.

    29. [29]

      Szostak, M.; Yao, L.; Aubé, J. J. Am. Chem. Soc. 2010, 132, 2078.

    30. [30]

      Szostak, M.; Yao, L.; Day, V. W.; Powell, D. R.; Aubé, J. J. Am. Chem. Soc. 2010, 132, 8836.

    31. [31]

      Kozak, J. A.; Dake, G. R. Angew. Chem., Int. Ed. 2008, 47, 4221.

    32. [32]

      Meng, G.; Szostak, M. Org. Biomol. Chem. 2016, 14, 5690.

    33. [33]

      Shi, S.; Meng, G.; Szostak, M. Angew. Chem. Int. Ed. 2016, 55, 6959.

    34. [34]

      Shi, S.; Szostak, M. Chem. Eur. J. 2016, 22, 10420.

    35. [35]

      Meng, G.; Szostak, M. Angew. Chem. Int. Ed. 2015, 54, 14518.

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    6. [6]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    7. [7]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    8. [8]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    9. [9]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    10. [10]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    11. [11]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    12. [12]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    13. [13]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    14. [14]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    15. [15]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    20. [20]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

Metrics
  • PDF Downloads(7)
  • Abstract views(943)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return