Citation:
Wenting Guo, Li Zhao, Baodui Wang, Yan Ma, Zhongli Zhao. Exploration and Practice of Higher-Order Competency-Oriented Progressive Research Learning Model: A Case Study of a “Pharmaceutical Chemistry” Course[J]. University Chemistry,
;2023, 38(12): 51-60.
doi:
10.3866/PKU.DXHX202306007
-
In response to the issues in the teaching of the medicinal chemistry course, we propose an innovative teaching approach based on a higher-order skills-oriented advanced research-oriented learning model. By combining the P-MASE research-oriented learning model with advanced instructional activity design, we create a higher-order skills-oriented teaching activity that integrates “interesting case research + creative research activities + project challenges”, and construct a teaching scenario that incorporates the instructional content. Under the guidance of teachers, students advance their research-oriented learning in medicinal chemistry through the P-MASE framework, which involves problem identification, method exploration, scientific analysis, effective solution, and evaluation of outcomes. This approach facilitates theoretical development and enhances students’ research and innovation thinking skills. Through an analysis of the achievement of the medicinal chemistry course, it is confirmed that this model can effectively enhance the higher-order nature, innovation, and challenge of the course.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[15]
-
[16]
-
[17]
-
[18]
-
[19]
-
[20]
-
[21]
-
[1]
-
-
-
[1]
Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022
-
[2]
Peihong Fan , Hongxiang Lou . 研究生高等天然药物化学课程的教学改革探索——导学互促式混合课堂教学与自主学习能力培养. University Chemistry, 2025, 40(6): 16-21. doi: 10.12461/PKU.DXHX202407078
-
[3]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[4]
Suqing Shi , Anyang Li , Yuan He , Jianli Li , Xinjun Luan . Exploration and Practice of the “Progressive” Integrated Training Mode for Innovative Chemistry Talents at Comprehensive Universities in Western China. University Chemistry, 2024, 39(6): 42-49. doi: 10.3866/PKU.DXHX202402009
-
[5]
Lijuan Wang , Yuping Ning , Jian Li , Sha Luo , Xiongfei Luo , Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017
-
[6]
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
-
[7]
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
-
[8]
Liping Wang , Huanfeng Wang , Yuling Li , Lingchuan Li , Xiaojing Li , Huifeng Chen , Bowen Ji , Linna Wang . Exploring the Full Process of a Research-Based Teaching Model through the Deep Integration of Theory and Practice: A Case Study of the Self-Designed Scheme for “Determination of Total Acid Content in White Vinegar”. University Chemistry, 2025, 40(5): 244-251. doi: 10.12461/PKU.DXHX202406035
-
[9]
Xiaoxuan Yu , Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200
-
[10]
Dapeng Liu , Fang Wang , Jingbin Zeng . Exploration on College Chemistry Teaching Focused on Cultivation of Scientific Research Ability. University Chemistry, 2024, 39(8): 126-131. doi: 10.3866/PKU.DXHX202401034
-
[11]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[12]
Yuyang Zhang , Yuqing Zhang , Quanxing Mao , Zixuan Chen , Ying Xiong . Application of Real-World Problem-Oriented Teaching Methods in Analytical Chemistry Course. University Chemistry, 2025, 40(10): 17-22. doi: 10.12461/PKU.DXHX202411072
-
[13]
Jiahao Zeng , Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019
-
[14]
Wei Tan , Feng Shi . Cultivation of Scientific Research Innovation Abilities in Chemistry Graduate Students at Local Universities. University Chemistry, 2024, 39(6): 23-28. doi: 10.3866/PKU.DXHX202311098
-
[15]
Zhusheng Huang , Wei Xue , Yongzheng Chang , Lianhui Wang , Zhimin Luo . Teaching Reform in Physical Chemistry Experiments: Cultivating Students’ Innovation and Practical Skills. University Chemistry, 2025, 40(10): 10-16. doi: 10.12461/PKU.DXHX202411019
-
[16]
Xu Wang , Bowei Chen . Project-based Integrated Teaching Models Applied to the All-English Advanced Analytical Chemistry Course. University Chemistry, 2025, 40(10): 276-281. doi: 10.12461/PKU.DXHX202411011
-
[17]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[18]
Bingliang Li , Yuying Han , Dianyang Li , Dandan Liu , Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070
-
[19]
Liping Guo , Hongmei Wang , Li Song , Mengli Li , Haiyang Guo . Reform and Practice of Exercise Lecture in Physical Chemistry Based on the Project-Driven Learning. University Chemistry, 2025, 40(7): 62-70. doi: 10.12461/PKU.DXHX202409102
-
[20]
Shuangshuang Long , Jingjing Liu , Xiaojuan Wang . Exploring the Application of Generative AI in Analytical Chemistry Education. University Chemistry, 2025, 40(9): 25-33. doi: 10.12461/PKU.DXHX202408096
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1320)
- HTML views(210)
Login In
DownLoad: