Citation: Ruqi Wang,  Peixin Wang,  Zhaoyu Wang,  Ruijian Fang,  Weiguang Zhao,  Ying Guan. Example of Outcome-based Investigational Experiment and the Development of Innovation Capabilities: Primary Study on the Ultrasound-Assisted Fischer Esterification Reaction Conditions[J]. University Chemistry, ;2023, 38(10): 199-208. doi: 10.3866/PKU.DXHX202301027 shu

Example of Outcome-based Investigational Experiment and the Development of Innovation Capabilities: Primary Study on the Ultrasound-Assisted Fischer Esterification Reaction Conditions

  • Corresponding author: Weiguang Zhao,  Ying Guan, 
  • Received Date: 26 January 2023
    Revised Date: 19 April 2023

  • In the outcome-based teaching activities of investigational experiments and innovative capacity development, a three-stage teaching process is designed to enable students to experience the whole process of scientific research and develop research skills in the experimental learning process. The three stages are design, implementation, and conclusion of the program. This paper demonstrates the results of teaching activity based on an example of a student’s lab report written in the form of a published paper. To investigate the Fischer esterification reaction under ultrasonic assisted conditions, the report compares the catalytic efficiency of different catalysts for the reaction using the esterification synthesis reaction of ethyl benzoate as an example. The results indicate that acid-loaded montmorillonite K-10 catalysis is significantly better than sulfuric acid catalysis. The report also compares the powder X-ray diffraction spectra of montmorillonite before and after modification, and provides a preliminary discussion of the mechanism. The reaction conditions are mild, and have implications for the synthesis of small molecule esters.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

      Mwangi, M. T.; Schulz, M. D.; Bowden, N. B. Org. Lett. 2009, 11 (1), 33.

    8. [8]

      Gessner, R. K.; Chibale, K. Synlett 2009, 17, 2839.

    9. [9]

      Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118 (39), 9440.

    10. [10]

    11. [11]

      Marcoux, L.; Florek, J.; Kleitz, F. Appl. Cat. A- Gen. 2015, 504, 493.

    12. [12]

      Sibi, M. P.; Despande, P. K.; Laloggia, A. J. Method for Preparation of Optically Active Diarylalanines. US5623087, 1997-04-22.

    13. [13]

      Siddiqui, M. A.; Nan, Y.; Patel, M. F.; Reddy, P. A. P.; Mansoor, U. F.; Meng, Z.; Vitharana, L. D.; Zhao, L.; Mandal, A. K.; Liu, D.; et al. Preparation of Pyrazolo[1,5-a]pyrimidine Compounds as mTOR Inhibitors. WO2011090935, 2011-07-28.

    14. [14]

      Yu, X.; Chen, K.; Yang, F.; Zha, S.; Zhu, J. Org. Lett. 2016, 18 (20), 5412.

    15. [15]

      Ince, S.; Arslan-Acaroz, D.; Demirel, H. H.; Varol, N.; Ozyurek, H. A.; Zemheri, F.; Kucukkurt, I. Biomed. & Pharmacother. 2017, 96, 263.

    16. [16]

      Song, R.; Liu, F.; Yang, J.; Yao, L.; He, L.; Qin, B. J. Macromol. Sci. B 2011, 50 (7), 1260.

    17. [17]

      Satou, A.; Sagawa, J.; Sun, H. M.; Sibamoto, Y.; Yonomoto, T. Nucl. Eng. Des. 2021, 379, 111234.

    18. [18]

    19. [19]

    20. [20]

      Schierle, S.; Neumann, S.; Heitel, P.; Willems, S.; Kaiser, A.; Pollinger, J.; Merk, D. J. Med. Chem. 2020, 63 (15), 8369.

    21. [21]

      Brown, D. S. Preparation of 3-(3-Amidophenyl)-3,4-dihydroquinazolin-4-ones for Treating Diseases Mediated by Cytokines:WO2000055153,2000-09-21.

    22. [22]

      Agbaje, O. C.; Fadeyi, O. O.; Fadeyi, S. A.; Myles, L. E.; Okoro, C. O. Bioorg. Med. Chem. Lett. 2011, 21 (3), 989.

    23. [23]

      Badger, G. M.; Harris, R. L. N.; Jones, R. A.; Sasse, J. M. J. Chem. Soc. 1962, 4329.

    24. [24]

      Davidek, J. J. Chromatogr. 1962, 9, 363.

    25. [25]

    26. [26]

      Rathi, J. O.; Shankarling, G. S. ChemistrySelect 2020, 5 (9), 2787.

    27. [27]

      Busto, E.; Gotor-Fernandez, V.; Montejo-Bernardo, J.; Garcia-Granda, S.; Gotor, V. Org. Lett. 2007, 5 (9), 2787.

    28. [28]

    29. [29]

      Hennessy, M. C.; O'Sullivan, T. P. RSC Adv. 2021, 11, 22859.

    30. [30]

      Du, R.; Yuan, H.; Zhao, C.; Wang, Y.; Yao, J.; Li, H. Mol. Catal. 2020, 490, 110947.

    31. [31]

      Gopinath, R.; Barkakaty, B.; Talukdar, B.; Patel, B. K. J. Org. Chem. 2003, 68 (7), 2944.

    32. [32]

      Gaifutdinova, E. K.; Beresnev, V. V. Russ. J. Appl. Chem. 2002, 75 (3), 441.

    33. [33]

    34. [34]

      Cravotto, G.; Cintas, P. Chem. Eur. J. 2010, 13 (7), 1902.

    35. [35]

      Khurana, J. M.; Sahoo, P. K.; Maikap, G. C. Synthetic Commun. 1990, 20 (15), 2267.

    36. [36]

      Prousis, K. C.; Avlonitis, N.; Heropoulos, G. A.; Calogeropoulou, T. Ultrason. Sonochem. 2014, 21 (3), 937.

    37. [37]

      Funabiki, T.; Sugio, D.; Inui, N.; Maeda, M.; Hitomi, Y. Chem. Commun. 2002, 5, 412.

    38. [38]

      Pontes, L. F. B. L.; Souza, J. E. G.; Galembeck, A.; Melo, C. P. Sens. Actuators B Chem. 2013, 177, 1115.

    39. [39]

      Mitsudome, T.; Matsuno, T.; Sueoka, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Green Chem. 2012, 14 (3), 610.

    40. [40]

      Bantu, B.; Singh, G.; Kaur, S.; Kumar, N.; Kapur, G. S.; Kant, S.; Malhotra, R. K. Ziegler-Natta Catalyst Systems Comprising a 1,2-Phenylenedioate as Internal Donor, Process for Preparing the Same, and Use the Catalyst for Olefin Polymerization. WO2014013401, 2014-01-23.

    41. [41]

      Nagy, N. M.; Jakab, M. A.; Konya, J.; Antus, S. Appl. Clay Sci. 2002, 21 (3/4), 213.

    42. [42]

      Ramesh, S.; Prakash, B. S. J.; Bhat, Y. S. Appl. Clay Sci. 2010, 48 (1/2), 159.

    43. [43]

      Kanda, L. R. S.; Corazza, M. L.; Zatta, L.; Wypych, F. Fuel 2017, 193, 265.

    44. [44]

      Cravotto, G.; Cintas, P. Chem. Soc. Rev. 2006, 35 (2), 180.

    45. [45]

      Clark, J.; Kybett, A.; Macquarrie, D.; Barlow, S.; Landon, P. J. Chem. Soc. Chem. Commun. 1989, 1353.

    46. [46]

  • 加载中
    1. [1]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    2. [2]

      Zufeng Qiu Jie Ouyang Yiru Wang Hengting Yang Xin Liao Chi Zhang Xuanyao Jiang Shunliu Deng Zhiwei Lin . 综合运用分析仪器解析“盲盒”样品——未知物的剖析. University Chemistry, 2025, 40(6): 296-302. doi: 10.12461/PKU.DXHX202405167

    3. [3]

      Liping Wang Huanfeng Wang Yuling Li Lingchuan Li Xiaojing Li Huifeng Chen Bowen Ji Linna Wang . Exploring the Full Process of a Research-Based Teaching Model through the Deep Integration of Theory and Practice: A Case Study of the Self-Designed Scheme for “Determination of Total Acid Content in White Vinegar”. University Chemistry, 2025, 40(5): 244-251. doi: 10.12461/PKU.DXHX202406035

    4. [4]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    5. [5]

      Hongyan Chen Zhuoxun Wei Chengyong Su Song Gao . Introduction to Undergraduate Education and Teaching Reform in Basic Disciplines: the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 1-7. doi: 10.12461/PKU.DXHX202409125

    6. [6]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    7. [7]

      Yan Liu Xiaojun Han Ping Xu Guoxu Zhang Yu Wang Zhicheng Zhang Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002

    8. [8]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    9. [9]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    10. [10]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    11. [11]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    12. [12]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    13. [13]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    14. [14]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    17. [17]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    18. [18]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    19. [19]

      Qiuping Liu Asan Yang Jinfa Cai Ling Liu Weirong Ji Genrong Qiang . Developing a New Paradigm for Integrated Science and Education & Multidimensional Connectivity in Chemistry and Chemical Engineering Experimental Education: A Case Study at the National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Zhejiang University of Technology). University Chemistry, 2024, 39(7): 1-7. doi: 10.3866/PKU.DXHX202404001

    20. [20]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

Metrics
  • PDF Downloads(1)
  • Abstract views(618)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return