Citation: Weiqing Zhang,  Guping Hu. Comparison of Common Classical Analytical Models for Mesoporous Adsorption[J]. University Chemistry, ;2023, 38(9): 105-113. doi: 10.3866/PKU.DXHX202212053 shu

Comparison of Common Classical Analytical Models for Mesoporous Adsorption

  • The scientific characterization of the properties of mesoporous materials is a key link for their development and application. In this paper, the development history, application scope, and characteristics of mesoporous adsorption and commonly used classical analytical models are briefly introduced by tabular comparison. To systematically understand the classical mesoporous analysis methods in physical adsorption, they were classified into four categories: modeled, model-free, completely model-free, and reverse methods. Then, these methods and three frequently-used analytical software for mesoporous adsorption were compared and analyzed. This has reference value for technicians of adsorption instrument management as well as for teaching and research of mesoporous materials.
  • 加载中
    1. [1]

      Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60 (2), 309.

    2. [2]

    3. [3]

      Brunauer, S.; Mikhail, R. S.; Bodor, E. E. J. Colloid Interface Sci. 1967, 24 (4), 451.

    4. [4]

      Shull, C. G. J. Am. chem. Soc. 1948, 70, 1405.

    5. [5]

    6. [6]

      Cranston, R. Adv. Catal. 1957, 9, 143.

    7. [7]

      Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373.

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

      Thomson, W. Phil. Mag. 1871, 42, 448.

    14. [14]

      Zsigmondy, A. Z. Anorg. Chem. 1911, 71, 356.

    15. [15]

      Foster, A. G. Faraday Soc. 1932, 28, 645.

    16. [16]

      Harkins, W. D.; Jura, G. J. Am. Chem. Soc. 1944, 66 (8), 1366.

    17. [17]

      Wheeler, A. Adv. Catal. 1951, 3, 249.

    18. [18]

      Pierce, C. J. Phys. Chem. 1953, 57 (2), 149.

    19. [19]

      Montarnal, R. J. Phys. et Rad. 1953, 12, 732.

    20. [20]

      Rouquerol, F.; Rouquerol, J.; Sing, K. S. W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids, 2nd ed.; Elsevier-Academic Press:Amsterdam, The Netherlands, 2014.

    21. [21]

      Innes, W. B. Anal. Chem. 1957, 29 (7), 1069.

    22. [22]

      Lippens, B. C.; de Boer, J. H. J. Catal. 1964, 3, 44.

    23. [23]

      Lippens, B. C.; de Boer, J. H. J. Catal. 1965, 4, 319.

    24. [24]

      de Boer, J. H.; Lippens, B. C.; Linsen, B. G.; Broekhoff, J. C. P.; van den Heuvel, A.; Osinga, T. J. J. Colloid Interface Sci. 1966, 21, 405.

    25. [25]

      Dollimore, D.; Heal, G. R. J. Appl. Chem. 1964, 14,109.

    26. [26]

      Dollimore, D.; Heal, G. R. J. Colloid Interface Sci. 1970, 33 (4), 508.

    27. [27]

      Roberts, B. F. J. Colloid Interface Sci. 1967, 23 (2), 266.

    28. [28]

      Broekhoff, J. C. P.; de Boer, J. H. J. Catal. 1967, 9 (1), 15.

    29. [29]

    30. [30]

      Broekhoff, J. C. P.; Bodor, E. E. J. Colloid Interface Sci. 1967, 24 (4), 451.

    31. [31]

      Broekhoff, J. C. P.; Bodor, E. E. J. Colloid Interface Sci. 1967, 25 (3), 353.

    32. [32]

      Dollimore, D.; Heal, G. R. J. Colloid Interface Sci. 1970, 42 (2), 233.

    33. [33]

    34. [34]

    35. [35]

    36. [36]

      Kruk, M.; Jaroniec, M. Langmuir 1997, 13, 6267.

    37. [37]

      Lukens, W.W.; Schmidt-Winkel, P.; Zhao, D. Y.; Feng, J. L.; Stucky, G. D. Langmuir 1999, 15, 5403.

    38. [38]

      Kruk, M.; Jaroniec, M. Langmuir 1997, 13, 6267.

    39. [39]

      Rocha, J. V.; Barrera, D.; Sapag, K. Top Catal. 2011, 54, 121.

    40. [40]

      Rocha, J. V.; Barrera, D.; Sapag, K. Micropor. Mesopor. Mat. 2014, 200, 68.

    41. [41]

      Broekhoff, J. C. P.; de Boer, J. H. J. Catal. 1968, 10 (2), 153.

    42. [42]

    43. [43]

      Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Stud. Surf. Sci. Catal. 2007, 160, 49.

    44. [44]

      Osterrieth, J.; Rampersad, J.; Madden, D.; Rampersad, N.; Storic, L.; Connolly, B.; Allendorf, M. D.; Stavila, V.; Snider, J. L; Ameloot, R.; et al. Adv. Mater. 2022, 2201502.

    45. [45]

    46. [46]

      Sonwane, C. G.; Bhatia, S. K. Stud. Surf. Sci. Catal. 2000, 129, 607.

    47. [47]

      Groen, J. C.; Peffer, L.; Pérez-Ramírez. J. Micropor. Mesopor. Mat. 2003, 60, 1.

  • 加载中
    1. [1]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    5. [5]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    6. [6]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    7. [7]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    12. [12]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    16. [16]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    17. [17]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

Metrics
  • PDF Downloads(4)
  • Abstract views(1096)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return