Citation:
Cheng Chen, Jiaxing Dang, Xinyi Wang, Yancen Liu, Xiangjing Gao. Improvement and Expansion of the Acetanilide Preparation Experiment[J]. University Chemistry,
;2023, 38(4): 44-52.
doi:
10.3866/PKU.DXHX202211053
-
In this study, the preparation method of acetanilide, which is commonly taught in current undergraduate experimental courses, is improved. While acetic acid and aniline were used as starting materials in the improved method, zinc powder was replaced with stannous chloride (which is listed as an easy-to-make tube explosion product) as a reducing agent to prevent aniline from being oxidized. At the same time, p-toluene sulfonic acid was added as a catalyst. A fixed bed dehydration reflux device was used instead of the classical fractionation device, and a packed rectification column was used as the fixed bed. The column was filled with glass spring packing, a 4A molecular sieve and color-changing silica gel from bottom to top in turn. During the reaction, distilled water and acetic acid were fractionated by the glass spring packing, acetic acid was refluxed to the reaction flask, and water was absorbed by the 4A molecular sieve and color-changing silica gel. After absorbing water, the color of the silica gel changed from orange to green, which is a clear indication of the reaction process. The improved experiment does not require control reagents, the reaction time is shortened, and the phenomenon is rich, making it more suitable for undergraduate teaching. In addition, two extended experiments were designed in this study, which can be selected according to the needs of teaching. One is to prepare phenyl 4-acetylaminoacetate from acetanilide; the second is to determine the unreacted aniline content in the waste liquid by constant pH titration. This modified experimental procedure employs extraction, column chromatography, titration, and data processing and analysis, which can effectively improve the comprehensive experimental ability of the students.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[1]
-
-
-
[1]
Wenhui Li , Changshuo Zhu , Xinyu Cui , Chenfei Zhao , Lina Qiu , Yan Li , Chuandong Wu , Min Yang , Yuan Zhuang . Visual Determination of Acid-Base Titration Endpoints Using Smartphone APP-Based Analysis. University Chemistry, 2025, 40(7): 328-335. doi: 10.12461/PKU.DXHX202409062
-
[2]
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
-
[3]
Ruming Yuan , Laiying Zhang , Xiaoming Xu , Pingping Wu , Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030
-
[4]
Longping Li , Jiali Li , Tiange Qu , Jiaqing Cai , Chuyu Zhang , Wenji Guo , Qiulian Li , Fan Luo . “可视化”助力从茶叶中提取咖啡因实验的关键步——升华. University Chemistry, 2025, 40(8): 272-276. doi: 10.12461/PKU.DXHX202409137
-
[5]
Ying Yang , Yonghan Wu , Zixuan Li , Lu Zhang , Rongqin Lin , Yefan Zhang , Jiquan Liu , Xiaohui Ning , Yan Li , Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024
-
[6]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[7]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[8]
Yingpeng ZHANG , Xingxing LI , Yunshang YANG , Zhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064
-
[9]
Yiying Yang , Rongxiu Zhu , Yuchen Ma , Dongju Zhang . MATLAB-based Visualization of Hydrogen-Like Orbitals and Analysis of Relavant Teaching Problems. University Chemistry, 2025, 40(9): 375-382. doi: 10.12461/PKU.DXHX202411015
-
[10]
Lijun Yang . Thoughts and Practices on Enhancing Students’ Comprehension through Visualized Instruction of Structural Chemistry. University Chemistry, 2025, 40(10): 295-302. doi: 10.12461/PKU.DXHX202411048
-
[11]
Yi Fan , Zhuoqi Jiang , Zhipeng Li , Xuan Zhou , Jingan Lin , Laiying Zhang , Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061
-
[12]
Jianqiang Zheng , Yongbin Huang , Wencan Ming , Yingju Liu . Intelligent Reaction Optimization: Synthesis of Acetylsalicylic Acid Driven by Deep Learning and Optimization Algorithms. University Chemistry, 2025, 40(9): 87-98. doi: 10.12461/PKU.DXHX202411062
-
[13]
Kexin Feng , Jie Zhang , Yujia Sun , Qiong Ai , Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045
-
[14]
Yongqing Kuang , Jie Liu , Jianjun Feng , Wen Yang , Shuanglian Cai , Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012
-
[15]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[16]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[17]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[18]
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
-
[19]
Xuefei Zhao , Xuhong Hu , Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008
-
[20]
Xin Zhou , Yiting Huo , Songyu Yang , Bowen He , Xiaojing Wang , Zhen Wu , Jianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-. doi: 10.1016/j.actphy.2025.100160
-
[1]
Metrics
- PDF Downloads(19)
- Abstract views(1315)
- HTML views(282)
Login In
DownLoad: