Citation:
Yu Liu, Jiming Zheng, Nayan Zongchen, Hong Wu, Wanqun Hu. Combining Infrared Spectroscopy Experiment with Quantum Chemical Calculations to Study Hydrogen Bond in Several Aliphatic Alcohol and CCl4 Solutions[J]. University Chemistry,
;2023, 38(8): 216-224.
doi:
10.3866/PKU.DXHX202210029
-
Infrared spectroscopy has become a common method for analysis and characterization owing to its high sensitivity, high-speed measurement, and ability to obtain many information about functional groups. Although most of the experimental projects in existing textbooks focus on the qualitative and quantitative analysis of compounds, which are mainly based on infrared spectroscopy, there are few experimental investigations on infrared spectroscopy involving intermolecular hydrogen bonding and quantum chemical calculations. In this study, based on original infrared spectroscopy experiments, several common aliphatic alcohols were used as examples to investigate the infrared spectral characteristics of alcohol-carbon tetrachloride solutions with different percentages (V/V%). The hydrogen bond structures were explored in combination with quantum chemical calculations. The improved teaching method, combining macro and micro that is experimental phenomena and molecular structure respectively, may enable students to have a clearer understanding of the original frequency values of absorption peaks and the microscopic effect of intermolecular hydrogen bonds. In addition, it can significantly improve their interest in learning, broaden their horizons, and cultivate innovative thinking and critical thinking skills.
-
-
-
[1]
Zhang, J.; Chen, P. C.; Yuan, B. K.; Ji, W.; Cheng, Z. H.; Qiu, X. H. Science 2013, 342, 611.
-
[2]
Kawai, S.; Nishiuchi, T.; Kodama, T.; Spijker, P.; Pawlak, R.; Meier, T.; Tracey, J.; Kubo, T.; Meyer, E.; Foster, A. S. Sci. Adv. 2017, 3, e1603258.
-
[3]
Li, G.; Zhang, Y. Y.; Li, Q. M.; Wang, C.; Yu, Y.; Zhang, B. B.; Hu, H. S.; Zhang, W. Q.; Dai, D. X.; Wu, G. R.;et al. Nat. Commun. 2020, 11, 5449.
-
[4]
Dereka, B.; Yu, Q.; Lewis, Nicholas H. C.; Carpenter, W. B.; Bowman, J. M.; Tokmakoff, A. Science 2021,371, 160.
-
[5]
Sweetman, A. M.; Jarvis, S. P.; Sang, H. Q.; Lekkas, I.; Rahe, P.; Wang, Y.; Wang, J. B.; Champness, N. R.; Kantorovich, L.; Moriarty, P.Nat. Commun. 2014, 5, 3931.
-
[6]
Chibani, S.; Badawi, M.; Loiseau, T.; Volkringer, C.; Cantrel, L.; Paul, J. F. Phys. Chem. Chem. Phys. 2018, 20, 16770.
-
[7]
Hao, M. H. J. Chem. Theory Comput. 2006, 2, 863.
-
[8]
George, W. O.; Has, T.; Hossain, M. F.; Jones, B. F.; Lewis, R. J. Chem. Soc., Faraday Trans. 1998,94, 2701.
-
[9]
Coussan, S.; Roubin, P.; Perchard, J. P. J. Phys. Chem. A 2004, 108, 7331.
-
[10]
Fedor, A. M.; Toda, M. J. J. Chem. Educ. 2014, 91, 2191.
-
[11]
Bec, K. B.; Futami, Y.; Woxjcik, M. J.; Ozaki, Y. Phys. Chem. Chem. Phys. 2016,18, 13666.
-
[12]
Jadhav, D. L.; Karthick, N. K.; Kannan P. P.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G. J. Mol. Struct. 2017, 1130, 497.
-
[13]
Kannan, P. P.; Karthick, N. K.; Arivazhagan, G. Spectrochim. Acta A 2020,229, 117892.
-
[14]
-
[15]
Tirado-Rives, J.; Jorgensen, W. L. J. Chem. Theory. Comput. 2008, 4 (2), 297.
-
[16]
Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. J. Comput. Chem. 2019, 40 (32), 2868.
-
[17]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;Petersson, G. A.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.:Wallingford, CT, USA, 2019.
-
[18]
-
[19]
-
[20]
-
[21]
Joseph W. O. Vibrational Analysis in Gaussian.[2022-05-06]. https://gaussian.com/vib/
-
[22]
Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111 (45), 11683.
-
[23]
-
[24]
Malloum, A.; Fifen, J. J.; Conradie, J. Int. J. Quantum. Chem. 2020,120 (13), e26234.
-
[25]
Golub, P.; Doroshenko, I.; Pogorelov, V. Phys. Lett. A 2014, 378, 1937.
-
[26]
Golub, P.; Pogorelov, V.; Doroshenko, I. J. Mol. Liq. 2012, 169, 80.
-
[1]
-
-
-
[1]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[2]
Xue Wu , Yupeng Liu , Bingzhe Wang , Lingyun Li , Zhenjian Li , Qingcheng Wang , Quansheng Cheng , Guichuan Xing , Songnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109
-
[3]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[4]
Hong Wu , Yuxi Wang , Hongyan Feng , Xiaokui Wang , Bangkun Jin , Xuan Lei , Qianghua Wu , Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141
-
[5]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[6]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[7]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[8]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[9]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[10]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[11]
Yanfen PENG , Xinyue WANG , Tianbao LIU , Xiaoshuo WU , Yujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018
-
[12]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[13]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[14]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
-
[15]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[16]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[17]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[18]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024
-
[19]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[20]
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
-
[1]
Metrics
- PDF Downloads(7)
- Abstract views(2131)
- HTML views(153)