Citation: Xiaohan Wang,  Dongxiao Cao,  Wei Li,  Yan Chen,  Anna Tang,  Deming Kong. Synthesis and Application of Morphology Controllable Covalent Organic Frameworks[J]. University Chemistry, ;2023, 38(5): 110-118. doi: 10.3866/PKU.DXHX202206098 shu

Synthesis and Application of Morphology Controllable Covalent Organic Frameworks

  • Covalent organic frameworks (COFs), a new type of crystalline porous materials, have attracted considerable attention in many fields such as separation, catalysis, drug release, and optoelectronics. The crystallinity and morphology of COFs determine their application. In this study, the synthetic methods and applications of COFs with different morphologies (spherical, thin film, rod, tubular, fibrous, belt, cage, and roll) are reviewed. Existing problems are also discussed and their potential solutions are proposed.
  • 加载中
    1. [1]

      Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.

    2. [2]

      Ma, W. D.; Zheng, Q.; He, Y. T.; Li, G. R.; Guo, W. J.; Lin, Z.; Zhang, L. J. Am. Chem. Soc. 2019, 141, 18271.

    3. [3]

      Li, Y. X.; Zhang, H. N.; Chen, Y. T.; Huang, L.; Lin, Z.; Cai, Z. W. ACS Appl. Mater. Interfaces 2019, 11, 22492.

    4. [4]

      Liang, H.; Xu, H. B.; Zhao, Y. T.; Zheng, J.; Zhao, H.; Li, G. L.; Li, C. P. Biosens. Bioelectron. 2019, 144, 111691.

    5. [5]

      Li, W.; Wang, R.; Jiang, H. X.; Chen, Y.; Tang, A. N.; Kong, D. M. Talanta 2022, 236, 122829.

    6. [6]

      Wang, K.; Wang, W.; Pan, S.; Fu, Y.; Dong, B.; Wang, H. Appl. Mater. Today 2020, 19, 100550.

    7. [7]

      Li, M. M.; Qiao, S.; Zheng, Y. L.; Andaloussi, Y. H.; Li, X.; Zhang, Z. J.; Li, A.; Cheng, P.; Ma, S. Q.; Chen, Y. J. Am. Chem. Soc. 2020, 142, 6675.

    8. [8]

      Yin, Z. J.; Xu, S. Q.; Zhan, T. G.; Qi, Q. Y.; Wu, Z. Q.; Zhao, X. Chem. Commun. 2017, 53, 7266.

    9. [9]

      Li, W.; Jiang, H. X.; Cui, M. F.; Wang, R.; Tang, A. N.; Kong, D. M. J. Hazard. Mater. 2022, 432, 128705.

    10. [10]

      Kandambeth, S.; Venkatesh, V.; Shinde1, D. B.; Kumari, S.; Halder, A.; Verma, S.; Banerjee, R. Nat. Commun. 2015, 6, 6786.

    11. [11]

      Sasmal, H. S.; Halder, A.; Kunjattu, S.; Dey, K.; Nadol, A.; Ajithkumar, T. G.; Bedadur, P. R.; Banerjee, R. J. Am. Chem. Soc. 2019, 141, 20371.

    12. [12]

      Shinde, D. B.; Cao, L.; Wonanke, A. D. D.; Li, X.; Kumar, S.; Liu, X. W.; Hedhili, M. N.; Emwas, A. H.; Addicoat, M.; Huang, K. W.; et al. Chem. Sci. 2020, 11, 5434.

    13. [13]

      Wang, X. H.; Li, W.; Jiang, H. X.; Chen, Y.; Gao, R. Z.; Tang, A. N.; Kong, D. M. Microchim. Acta 2021, 188, 235.

    14. [14]

      Hao, Q.; Li, Z. J.; Lu, C.; Sun, B.; Zhong, Y. W.; Wan, L. J.; Wang, D. J. Am. Chem. Soc. 2019, 141, 19831.

    15. [15]

      Chen, D. D.; Huang, S.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. Adv. Funct. Mater. 2020, 30, 1907717.

    16. [16]

      Pachfule, P.; Kandmabeth, S.; Mallick, A.; Banerjee, R. Chem. Commun. 2015, 51, 11717.

    17. [17]

      Gole, B.; Stepanenko, V.; Rager, S.; Grune, M.; Medina, D. D.; Bein, T.; Wurthner, F.; Beuerle, F. Angew. Chem. Int. Ed. 2018, 57, 846.

    18. [18]

      Rodriguez-San-Miguel, D.; Abrishamkar, A.; Navarro, J. A. R.; Rodriguez-Trujillo, R.; Amabilino, D. B.; Mas-Ballesté, R.; Zamora, F.; Puigmartí-Luis, J. Chem. Commun. 2016, 52, 9212.

    19. [19]

      Huang, W.; Jiang, Y.; Li, X.; Li, X.; Wang, J.; Wu, Q.; Liu, X. ACS Appl. Mater. Interfaces 2013, 5, 8845.

    20. [20]

      Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. L. Angew. Chem. Int. Ed. 2008, 47, 8826.

    21. [21]

      Zhang, F. Y.; Zhang, J. L.; Zhang, B. X.; Tan, X. N.; Shao, D.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Feng, J. Q.; Han, B. X.; et al. ChemSusChem 2018, 11, 3576.

    22. [22]

      Jennings, J.; Beija, M.; Richez, A. P.; Cooper, S. D.; Mignot, P. E.; Thurecht, K. J.; Jack, K. S.; Howdle, S. M. J. Am. Chem. Soc. 2012, 134, 4772.

    23. [23]

      Li, H. Y.; Bredas, J. L. Chem. Mater. 2019, 31, 3265.

    24. [24]

      Florian, B.; Bappaditya, G. Angew. Chem. Int. Ed. 2018, 57, 4850.

    25. [25]

      Ma, J. X.; Li, J.; Chen, Y. F.; Ning, R.; Ao, Y. F.; Liu, J. M.; Sun, J. L.; Wang, D. X.; Wang, Q. Q. J. Am. Chem. Soc. 2019, 141, 3843.

    26. [26]

      Unterlass, M. M. Angew. Chem. Int. Ed. 2018, 57, 2292.

    27. [27]

      Chen, Y.; Li, W.; Wang, X. H.; Gao, R. Z.; Tang, A. N.; Kong, D. M. Mater. Chem. Front. 2021, 5, 1253.

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    7. [7]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    8. [8]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    9. [9]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    11. [11]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    12. [12]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    13. [13]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    14. [14]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    15. [15]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    16. [16]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    17. [17]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    18. [18]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    19. [19]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(17)
  • Abstract views(1259)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return