Citation: Xuechun Li,  Fang Sun. The Synthesis and Application of α-Dicarbonyl Groups[J]. University Chemistry, ;2023, 38(2): 105-108. doi: 10.3866/PKU.DXHX202204010 shu

The Synthesis and Application of α-Dicarbonyl Groups

  • β-dicarbonyl compounds are important intermediates in organic synthesis, and their chemical properties play a major role in organic chemistry teaching. On this basis, this paper focuses on the synthesis and application of α-diketones involving hydration of alkynes, oxidation of alkynes and photocatalytic reaction, etc. The content of this paper is both closely related to and also an expansion of fundamental organic chemistry. Furthermore, the application of α-dicarbonyl compounds can broaden students’ horizons and boost their interest in learning.
  • 加载中
    1. [1]

      László, K.; Barbara, C. Strategic Applications of Named Reactions in Organic Synthesis, 1st ed.; Elsevier:London, UK, 2004.

    2. [2]

    3. [3]

      Yang, H.; Li, H.; Wei, G.; Jiang. Z. Angew. Chem. Int. Ed. 2021, 60, 19696.

    4. [4]

      Xu, Z.; Yang, T.; Tang, N.; Ou, Y.; Yin, S.; Kambe, N.; Qiu, R. Org. Lett. 2021, 23, 5329.

    5. [5]

      Secci, F.; Porcu, S.; Luridiana, A.; Frongia, A.; Ricci, P. C. Org. Biomol. Chem. 2020, 18, 3684.

    6. [6]

      He, X.; Gao, Y.; Nie, J.; Sun, F. Macromolecules 2021, 54, 3854.

    7. [7]

      Nobuta, T.; Tada, N.; Hattori, K.; Hirashima, S.; Miura, T.; Itoh, A. Tetrahedron Lett. 2011, 52, 875.

    8. [8]

      Wan, Z.; Mitchell, D.; Pu, Y. J.; Zhang, Y. T. J. Org. Chem. 2006, 71, 826.

    9. [9]

      Ascenso, O. S.; Marques, J. C.; Santos, A. R.; Xavier, K. B.; Ventura, M. R.; Maycock, C. D. Bioorg. Med. Chem. 2011, 19, 1236.

    10. [10]

      Jung, M. E.; Deng, G. S. Org. Lett. 2014, 16, 2142.

    11. [11]

      Mori, S.; Takubo, M.; Yanase, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Adv. Synth. Catal. 2010, 352, 1630.

    12. [12]

      Chen, S.; Liu, Z.; Shi, E.; Chen, L.; Wei, W.; Li, H.; Cheng, Y.; Wan, X. Org. Lett. 2011, 13, 2274.

    13. [13]

      Xu, C.; Xu, M.; Jia, Y.; Li, C. Org. Lett. 2011, 13, 1556.

    14. [14]

      Xia, X. F.; Gu, Z.; Liu, W.; Wang, N.; Wang, H.; Xia, Y.; Gao, H.; Liu, X. Org. Biomol. Chem. 2014, 12, 9909.

    15. [15]

      Zhu, X.; Li, P.; Shi, Q.; Wang, L. Green Chem. 2016, 18, 6373.

    16. [16]

      Hering, T.; Slanina, T.; Hancock, A.; Wille, U.; Konig, B. Chem. Commun. 2015, 51, 6568.

    17. [17]

      Liu, X.; Cong, T.; Liu, P.; Sun, P. J. Org. Chem. 2016, 81, 7256.

    18. [18]

      Charpe, V. P.; Sagadevan, A.; Hwang, K. C. Green Chem. 2020, 22, 4426.

    19. [19]

      Hirapara, P.; Riemer, D.; Hazra, N.; Gajera, J.; Finger, M.; Das, S. Green Chem. 2017, 19, 5356.

    20. [20]

      Song, T.; Zhou, X.; Wang, X.; Xiao, J.; Yang, Y. Green Chem. 2021, 23, 1955.

    21. [21]

      Staunton, J. Chem. Rev. 1997, 97, 2611.

    22. [22]

      Wang, M.; Dai, Z.; Jiang, X. Nat. Commun. 2019, 10, 2661.

    23. [23]

      Wolkenberg, S. E.; Wisnoski, D. D.; Leister, W. H.; Wang, Y.; Zhao, Z.; Lindsley, C. W. Org. Lett. 2004, 6, 1453

    24. [24]

      McKenna, J. M.; Halley, F.; Souness, J. E.; McLay, I. M.; Pickett, S. D.; Collis, A. J.; Page, K.; Ahmed, I. J. Med. Chem. 2002, 45, 2173.

    25. [25]

    26. [26]

      He, X.; Jia, W.; Gao, Y.; Jiang, S.; Nie, J.; Sun, F. Eur. Polym. J. 2022, 167, 111066.

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    3. [3]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    5. [5]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    6. [6]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    7. [7]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    10. [10]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    11. [11]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    12. [12]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    18. [18]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    19. [19]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    20. [20]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(0)
  • Abstract views(1186)
  • HTML views(225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return