Citation: Yanni Su,  Yi Lü,  Lichun Zhang. Chemiluminescence Immunoassay: A Sharp Tool for in Vitro Diagnosis[J]. University Chemistry, ;2023, 38(1): 141-148. doi: 10.3866/PKU.DXHX202203066 shu

Chemiluminescence Immunoassay: A Sharp Tool for in Vitro Diagnosis

  • Blood, body fluids, and tissue samples from the human body are rich in information. Any disease or condition of the human body can be determined by detecting relevant markers; this method is called “in vitro diagnosis”. Immune diagnosis is a crucial part of in vitro diagnosis. Chemiluminescence immunoassay is one of the mainstream technologies for conducting immune diagnosis. Based on the principle of the specific binding of the antigen antibody, chemiluminescence immunoassay has good specificity and sensitivity in clinical applications as well as in food and environment domains. Herein, several in vitro diagnosis techniques are briefly introduced, with emphasis on the principle, classification, application field, and development trend of chemiluminescence immunoassay.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Schurr, F.; Tison, A.; Militano, L.; Cheviron, N.; Sircoulomb, F.; Riviere, M. P.; Ribiere, C. M.; Thiery, R.; Dubois, E. J. Virol. Methods. 2019, 270, 70.

    4. [4]

    5. [5]

      Yalow, R. S.; Berson, S. A. Nature 1959, 184, 1684.

    6. [6]

      Faulk, W. P.; Taylor, G. M. Immunochemistry 1971, 8 (11), 1081.

    7. [7]

      Engvall, E.; Perlmann, P. Immunochemistry 1971, 8 (9), 871.

    8. [8]

      Halmann, M.; Velan, B.; Sery, T. Appl. Environ. Microbiol. 1977, 34, 473.

    9. [9]

    10. [10]

    11. [11]

    12. [12]

      Wang, S. S.; Wang, M. M.; Li, C. P.; Li, H. J.; Ge, C. H.; Zhang, X. D.; Jin, Y. D. Sensors Actuat. B-Chem. 2020, 311, 127919.

    13. [13]

      Tang, Y.; Zhang, B. H.; Wang, Y.; Zhao, F. Q.; Zeng, B. Z. ACS Appl. Nano Mater. 2021, 4 (7), 7264.

    14. [14]

      Lee, Y.; Kim, S. S.; Lee, J. H. Anal. Chim. Acta 2019, 1060, 8.

    15. [15]

      Bao, Y.; Han, K.; Ding, Z.; Li, Y.; Li, T.; Guan, M.; Li, G. Spectrochim. Acta A Mol. Biomol. 2021, 253, 119562.

    16. [16]

      Zhang, Z.; Xu, Y.; Ma, B.; Ma, Z.; Han, H. Talanta 2021, 235, 122736.

    17. [17]

      Mo, G. C.; Qin, D. M.; Jiang, X. H.; Zheng, X. F.; Mo, W. M.; Deng, B. Y. Sensors Actuat. B-Chem. 2020, 310, 127852.

    18. [18]

      Mao, Y.; Wang, N.; Yu, F.; Yu, S.; Liu, L.; Tian, Y.; Wang, J.; Wang, Y.; He, L.; Wu, Y. Analyst 2019, 144 (16), 4813.

    19. [19]

      Lin, Y.; Jia, J.; Yang, R.; Chen, D.; Wang, J.; Luo, F.; Guo, L.; Qiu, B.; Lin, Z. Anal. Chem. 2019, 91 (5), 3717.

    20. [20]

    21. [21]

      Vankrieken, L.; Hertogh, D. R. Clin. Chem. 1995, 41 (1), 36.

    22. [22]

      Souter, I.; Bellavia, A.; Williams, P. L.; Korevaar, T. I. M.; Meeker, J. D.; Braun, J. M.; De Poortere, R. A.; Broeren, M. A.; Ford, J. B.; Calafat, A. M.; et al. Environ. Health Perspect. 2020, 128 (6), 67007.

    23. [23]

      Zhao, K.; Tang, M.; Wang, H.; Zhou, Z.; Wu, Y.; Liu, S. Biosens. Bioelectron. 2019, 126, 767.

    24. [24]

      Flehmig, B.; Ranke, M.; Berthold, H.; Gerth, J. H. J. Infect. Dis. 1979, 140 (2), 169.

    25. [25]

    26. [26]

    27. [27]

    28. [28]

      Huang, Z. J.; Han, W. D.; Wu, Y. H.; Hu, X. G.; Yuan, Y. N.; Chen, W.; Peng, H. P.; Liu, A. L.; Lin, X. H. J. Electroanal. Chem. 2017, 785, 8.

    29. [29]

      Zong, C.; Wu, J.; Wang, C.; Ju, H. X.; Yan, F. C. Anal. Chem. 2012, 84 (5), 2410.

    30. [30]

      Gang, W.; Wan, Y.; Lin, G. F.; Li, Z. X.; Dong, Z. N.; Liu, T. C. J. Immunol. 2020, 484, 112829.

    31. [31]

      Li, L. F.; Lin, D.; Yang, F.; Xiao, Y. Y.; Yang, L.; Yu, S. M.; Jiang, C. L. ACS Appl. Nano Mater. 2021, 4 (4), 3932.

    32. [32]

      Shu, Q.; Wang, L.; Ouyang, H.; Wang, W.; Liu, F.; Fu, Z. Biosens. Bioelectron. 2017, 87, 908.

    33. [33]

      Roth-Konforti, M.; Green, O.; Hupfeld, M.; Fieseler, L.; Heinrich, N.; Ihssen, J.; Vorberg, R.; Wick, L.; Spitz, U.; Shabat, D. Angew. Chem. Int. Ed. 2019, 58 (30), 10361.

    34. [34]

      Yang, R.; Liu, J.; Song, D.; Zhu, A.; Xu, W.; Wang, H.; Long, F. Mikrochim. Acta 2019, 186 (11), 726.

    35. [35]

      Wan, W. W.; Ouyang, H. Anal. Chem. 2019, 149, 104055.

    36. [36]

      Liu, Z. J.; Xu, Y.; Xu, X. Y.; Wang, M. H. Analyst 2013, 138, 3280.

    37. [37]

      Juachon, M. J.; Regala, J. G.; Marquez, J.; Bailon, M. X. Open Chem. 2019, 17, 270.

    38. [38]

      Pang, Y. Q.; Cui, H.; Zheng, H. S.; Wan, G. H.; Liu, L. J.; Yu, X. F. Luminescence 2005, 20 (1), 8.

    39. [39]

    40. [40]

      Osamu, N.; Ji, X. Y.; Larry, J. K. J. Biolumin. Chemilumin. 1995, 10, 151.

    41. [41]

      Li, N.; Liu, D. Q.; Cui, H. Anal. Bioanal. Chem. 2014, 406, 5561.

    42. [42]

      Li, H. F.; Zhao, M.; Liu, W.; Chu, W. R.; Guo, Y. M. Talanta 2016, 147 (15), 430.

    43. [43]

      He, Y.; Xu, B.; Li, W. H.; Yu, H. L. J. Agric. Food Chem. 2015, 63 (11), 2930.

    44. [44]

      Huang, Y.; Gao, L.; Cui, H. ACS Appl. Mater. Interfaces 2018, 10 (20), 17040.

    45. [45]

      Rasoulzadeh, F.; Amjadi, M. J. Photochem. 2021, 420, 113493.

    46. [46]

      Ouyang, H.; Wang, L. M.; Yang, S. J.; Wang, W. W.; Wang, L.; Liu, F. Q.; Fu, Z. F. Anal. Chem. 2015, 87 (5), 2952.

    47. [47]

      Broeke, L. J. P.; Bruijn, V. G.; Heijnen, J. H. M.; Keurentjes. J. T. F. Ind. Eng. Chem. Res. 2001, 40, 5240.

    48. [48]

      Zhang, B.; Liu, W.; Liu, Z.; Fu, X.; Du, D. J. Aoac. Int. 2022, 105 (2), 346.

    49. [49]

      Rebeccani, S.; Wetzl, C.; Zamolo, V. A.; Criado, A.; Valenti, G.; Paolucci, F.; Prato, M. Chem. Commun. 2021, 57 (76), 9672.

    50. [50]

      Jie, M.; Yu, S.; Yu, F.; Liu, L.; He, L.; Li, Y.; Zhang, H.; Qu, L.; Harrington, P. B.; Wu, Y. J. Sci. Food Agric. 2018, 98 (9), 3384.

    51. [51]

      Fu, Z, F.; Yang, Z. J.; Tang, J. H.; Liu, H.; Feng, Y.; Ju, H. X. Anal. Chem. 2007, 79, 7376.

    52. [52]

    53. [53]

      Hu, B. F.; Li, J. J.; Mou, L.; Liu, Y.; Deng, J. Q.; Qian, W.; Sun, J. S.; Cha, R. T.; Jiang, X. Y. Lab Chip 2017, 17, 2225.

    54. [54]

      Li, Q.; Zhang, L.; Li, J.; Lu, C. Trends Analyt. Chem. 2011, 30 (2), 401.

    55. [55]

      Gao, H. F.; Han, J.; Yang, S. J.; Wang, Z. X.; Wang, L.; Fu, Z. F. Anal. Chim. Acta 2014, 839, 91.

    56. [56]

      Gómez, V.; Callao, M. P. Trends Analyt. Chem. 2007, 26 (8), 767.

    57. [57]

    58. [58]

    59. [59]

    60. [60]

    61. [61]

  • 加载中
    1. [1]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    2. [2]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    3. [3]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    4. [4]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    5. [5]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    7. [7]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    8. [8]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    9. [9]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    10. [10]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    11. [11]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    12. [12]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    13. [13]

      Jian He Dinglin Zhang Liping Wu Ying Bao Xiaochao Yang . 知识网络构建策略在有机化学教学中的应用及效果分析. University Chemistry, 2025, 40(8): 66-71. doi: 10.12461/PKU.DXHX202410092

    14. [14]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    16. [16]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    17. [17]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    18. [18]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    19. [19]

      Weigang Zhu Xiaofei Ma Yun Tian Huaji Liu Fanli Lu Yalu Ma . 基于知识图谱的“无机化学与化学分析”课程信息化教学资源构建与应用研究. University Chemistry, 2025, 40(6): 9-15. doi: 10.12461/PKU.DXHX202408113

    20. [20]

      Jinrong Bao Jinglin Zhang Wenxian Li Xiaowei Zhu . 苯甲酸稀土配合物的制备及性能表征——基于应用化学专业人才培养的综合化学实验案例分析. University Chemistry, 2025, 40(8): 218-224. doi: 10.12461/PKU.DXHX202409142

Metrics
  • PDF Downloads(35)
  • Abstract views(1116)
  • HTML views(253)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return