Citation: Zhongxue Fang,  Qihao Jin,  Haoyu Wen,  Wenting Sun,  Jingtao Dai. The High Efficiency Synthesis of Flavonoid Drug Molecules[J]. University Chemistry, ;2023, 38(1): 233-239. doi: 10.3866/PKU.DXHX202201019 shu

The High Efficiency Synthesis of Flavonoid Drug Molecules

  • Corresponding author: Jingtao Dai, ycjtdai@163.com
  • Received Date: 12 January 2022

  • The extraction of Rutin from Sophora japonica buds is a classic experiment performed in basic organic chemistry for the extraction of flavonoids from plants. The molecular structure of a series of flavonoid drugs extracted from plants, which are derived from 2-phenylchromogenone (also known as flavone) molecules, were analyzed. In the experiment, we found that the extraction yield of flavonoids is low and could not satisfy the current demand for flavonoid drugs. Therefore, we attempted to synthesize flavonoids and their corresponding derivatives using a high efficiency chemical method. Flavonoid synthesis was divided into two steps. First, 2’-hydroxychalcone was synthesized by aldol condensation, followed by the cyclization of iodine-catalyzed molecules to produce flavone. This experiment requires approximately 6 h to complete and can be used as a teaching experiment, as well as a development and open experiment after class. The improved experiment has the advantages of safety, easy operation, good repeatability, and high yield compared with the extraction from plants. In addition, through the improvement of this experiment, the students were guided to adopt a similar method to design and synthesize the flavonoid derivative “efloxatem” (the main active component in angina pectoris). This experiment enriched the teaching content of organic chemistry experiments, improved students’ analytical ability, and cultivated their spirit of scientific exploration.
  • 加载中
    1. [1]

      Kwesiga, G.; Kelling, A.; Kersting, S.; Sperlich, E.; Nickisch-Rosenegk, M.; Schmidt, B. J. Nat. Prod. 2020, 83, 3445.

    2. [2]

      Bautista, J.; Yu, S.; Tian, L. ACS Omega 2021, 6, 5119.

    3. [3]

      Zhang, J.; Qiu, X.; Tan, Q.; Xiao, Q.; Mei, S. J. Agric. Food Chem. 2020, 68, 14463.

    4. [4]

      Golshani, M.; Khoobi, M.; Jalalimanesh, N.; Jafarpour, F.; Ariafard, A. Chem. Commun. 2017, 53, 10676.

    5. [5]

      Cao, D.; Liu, Q.; Jing, W.; Tian, H.; Yan, H.; Bi, W.; Jiang, Y.; Chen, Y. ACS Sustainable Chem. Eng. 2020, 8, 19169.

    6. [6]

      Song, H.; Yang, R.; Zhao, W.; Katiyo, E.; Hua, X.; Zhang, E. J. Agric. Food Chem. 2014, 62, 3806.

    7. [7]

    8. [8]

      Lin, S.; Wade, J. D.; Liu, S. Acc. Chem. Res. 2021, 54, 104.

    9. [9]

      Yatabe, T.; Jin, X.; Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2015, 54, 13302.

    10. [10]

      Rouh, H.; Liu, Y.; Katakam, N.; Pham, L.; Zhu, Y.-L.; Li, G. J. Org. Chem. 2018, 83, 15372.

    11. [11]

      Samir, P.; Umang S. Asian J. Pharm. Clin. Res. 2016, 10 (2), 403.

    12. [12]

      Achraf, L.; Mahmoud, T. Ultrason. Sonochem. 2016, 31, 626.

    13. [13]

      Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. Lett. 2015, 17 (12), 71.

    14. [14]

      Wang, L.; Liu, X.; Dong, Z.; Fu, X.; Feng, X. Angew. Chem. Int. Ed. 2008, 120, 8798.

    15. [15]

      Madhu, D.; Sudhakar, M.; Kumar, K. S.; Reddy, D. R.; Sravani, A.; Ramakrishna, K.; Rao, C. H. Russ. J. Gen. Chem. 2017, 87, 2421.

    16. [16]

      Khanapur, M.; Pinna, N. K.; Badiger, J. Med. Chem. Res. 2015, 24, 2656

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    6. [6]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    7. [7]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    8. [8]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    9. [9]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    12. [12]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    13. [13]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    14. [14]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    17. [17]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    18. [18]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    19. [19]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    20. [20]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

Metrics
  • PDF Downloads(20)
  • Abstract views(1298)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return