Citation: Zihang Zhang,  Sizhe Li,  Liyan Kan,  Jun Wen,  Jiang Bian. 有机氟化物的电化学合成[J]. University Chemistry, ;2021, 36(12): 210200. doi: 10.3866/PKU.DXHX202102001 shu

有机氟化物的电化学合成

  • Corresponding author: Jiang Bian, bj@pku.edu.cn
  • Received Date: 1 February 2021

  • 有机氟化物在很多领域(尤其是药物方面)有着广泛的应用,但鉴于氟的特殊反应性,氟原子的引入一直是有机化学中的难题。而有机电化学合成作为近年来新兴的合成手段,大大拓宽了有机反应的界限,使得更多绿色简易的氟化方法被开发了出来。本文就将集中列举这些有机电化学方法氟化的实例,并探讨电化学方法对于氟化学这一领域可能的推动作用。
  • 加载中
    1. [1]

    2. [2]

      (a) Moissan, H. C. R. Hebd. Seances Acad. Sci. 1886, 102, 1534. (b) Moissan, H. C. R. Hebd. Seances Acad. Sci. 1886, 103, 202. (c) Moissan, H. C. R. Hebd. Seances Acad. Sci. 1886, 103, 256. (d) For some representative reports on fluorine and fluoride compounds, see:(i) Moissan, H. Ann. Chim. Phys. 1887, 12, 472.(ii) Moissan, H. Ann. Chim. Phys. 1891, 24, 224.(iii) Moissan, H. Ann. Chim. Phys. 1894, 2, 66.

    3. [3]

      Borodine, A. Ann. Chem. Pharm. 1863, 126, 58.

    4. [4]

      Elliott, A. J. Chlorofluorocarbons. In Organofluorine Chemistry:Principles and Commercial Applications; Banks, R. E., Smart, B. E., Tatlow, J. C. Eds.; Plenum Press:New York, USA, 1994; pp. 145-157.

    5. [5]

      (a) Rhodes, R. The Making of the Atomic Bomb; Simon and Schuster:New York, USA, 1986. (b) Rhodes, R. Dark Sun:The Making of the Hydrogen Bomb; Simon and Schuster:New York, USA, 1995.

    6. [6]

      Simons, J. H. J. Electrochem. Soc. 1949, 95, 47.

    7. [7]

      Pearlson, W. H. J. Fluorine. Chem. 1986, 32, 29.

    8. [8]

      Fuchigami, T.; Inagi, S. Acc. Chem. Res. 2020, 53, 322.

    9. [9]

      Dinoiu, V.; Fukuhara, T.; Hara, S.; Yoneda, N. J. Fluor. Chem. 2000, 103, 75.

    10. [10]

      Berger, M.; Herszman, J. D.; Kurimoto, Y.; Kruijff, G. H. M.; Schuell, A.; Rufc, S.; Waldvogel, S. R. Chem. Sci. 2020, 11, 6053.

    11. [11]

      Xiang, J.; Shang, M.; Kawamata, Y.; Lundberg, H.; Reisberg, S. H.; Chen, M.; Mykhailiuk, P.; Beutner, G.; Collins, M. R.; Davies, A.; et al. Nature 2019, 573, 398.

    12. [12]

      Fukuhara, T.; Akiyama, Y.; Yoneda, N.; Tada, T.; Hara, S. Tetrahedron Lett. 2002, 43, 6583.

    13. [13]

      Tajima, T.; Nakajima, A.; Fuchigami, T. J. Org. Chem. 2006, 71, 1436.

    14. [14]

      Hou, Y.; Higashiya, S.; Fuchigami, T. J. Org. Chem. 1999, 64, 3346.

    15. [15]

      Fuchigami, T.; Inagi, S. Chem. Commun. 2011, 47, 10211.

    16. [16]

      Baba, D.; Ishii, H.; Higashiya, S.; Fujisawa, K.; Fuchigami, T. Tetrahedron 2001, 57, 9067.

    17. [17]

      Hasegaw, M.; Ishii, H.; Fuchigami, T. Green Chem. 2003, 5, 512.

    18. [18]

      Cao, Y.; Suzuki, K.; Tajima, T.; Fuchigami, T. Tetrahedron 2005, 61, 6854.

    19. [19]

      Hasegawa, M.; Ishii, H.; Fuchigami, T. Tetrahedron Lett. 2002, 43, 1503.

    20. [20]

      Suzuki, J.; Shida, N.; Inagi, S.; Fuchigami, T. Electroanalysis 2016, 28, 2797.

    21. [21]

      Fuchigami, T.; Tajima, T. J. Fluor. Chem. 2005, 126, 181.

    22. [22]

      Aoyama, M.; Fukuhara, T.; Hara, S. J. Org. Chem. 2008, 73, 4186.

    23. [23]

      (a) Schulz, L.; Waldvogel, S. R. Synlett 2019, 30, 275.(b) Bin, Y.; Inagi, S.; Fuchigami, T. Beilstein J. Org. Chem. 2015, 11, 85.(c) Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Adv. Synth. Catal. 2010, 352, 2757.(d) Inagi, S.; Sawamura, T.; Fuchigami, T. Electrochem. Commun. 2008, 10, 1158.

    24. [24]

      Monoi, M.; Hara, S. J. Fluor. Chem. 2012, 140, 28.

    25. [25]

      Tajima, T.; Nakajima, A.; Doi, Y.; Fuchigami, T. Angew. Chem. Int. Ed. 2012, 51, 4413.

    26. [26]

      Sawamura, T.; Takahashi, K.; Inagi, S.; Fuchigami, T. Angew. Chem. Int. Ed. 2007, 46, 3550.

    27. [27]

      (a) Takahashi, K.; Furusawa, T.; Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Electrochim. Acta 2012, 77, 47. (b) Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigama, T. Adv. Synth. Catal. 2010, 352, 2757. (c) Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Org. Lett. 2010, 12, 644. (d) Fuchigami, T.; Sano, M. J. Electroanal. Chem. 1996, 414, 81.

    28. [28]

      Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.

    29. [29]

      Herszman, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 7893.

    30. [30]

      Fujita, T.; Fuchigami, T. Tetrahedron Lett. 1996, 37, 4725.

    31. [31]

      (a) Haupt, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 242. (b) Herszman, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 7893.

    32. [32]

      Fuchigami, T.; Tetsu, M.; Tajima, T.; Ishii, H. Synlett 2001, 8, 1269.

    33. [33]

      Fuchigami, T.; Mitomo, K.; Ishii, H.; Konno, A. J. Electroanal. Chem. 2001, 507, 30.

    34. [34]

      (a) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600. (b) Ohkubo, K.; Mizushima, K.; Iwata, R.; Souma, K.; Suzukib, N.; Fukuzumi, S. Chem. Commun. 2010, 46, 601.

    35. [35]

      (a) Barham, J. P.; Kçnig, B. Angew. Chem. Int. Ed. 2020, 59, 11732. (b) Huang, H.; Strater, Z. M.; Rauch, M.; Shee, J.; Sisto, T. J.; Nuckolls, C.; Lambert, T. H. Angew. Chem. Int. Ed. 2019, 58, 13318. (c) Yan, H.; Hou, Z.; Xu, H. Angew. Chem. Int. Ed. 2019, 58, 4592.

    36. [36]

      Qiu, Y.; Scheremetjew, A.; Finger, L. H.; Ackermann, L. Chem. Eur. J. 2020, 26, 3241.

    37. [37]

      Margrey, A. K.; Nicewicz, D. A. Acc. Chem. Res. 2016, 49, 1997.

    38. [38]

      Dapperheld, S.; Steckhan, E.; Brinkhaus, K. G.; Esch, T. Chem. Ber. 1991, 124, 2557.

    39. [39]

      DFT Calculation is done by Gaussian09, in B3LYP/6-31G(d) level for optimization and freqency analysis, and wB97X-D/def2-TZVP level for single point energy:Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian, Inc.:Wallingford CT, 2013.

    40. [40]

      Sources of EOX data:(a) Schmidt, W.; Steckhan, E. Chem. Ber. 1980, 113, 577. (b) Steckhan, E. Organic Syntheses with Electrochemically Regenerable Redox Systems. In Electrochemistry I. Topics in Current Chemistry, Steckhan E. Eds.; Springer:Berlin, Heidelberg, Germany, 1987; p. 142.

    41. [41]

      Andreeva, V. N.; Grinberga, V. A.; Dedovb, A. G.; Loktevb, A. S.; Mayorovaa; N. A.; Moiseevb, I. I.; Stepanova, A. A. Russ. J. Electrochem. 2013, 49, 996.

    42. [42]

      Rodrigo, S.; Um, C.; Mixdorf, J. C.; Gunasekera, D; Nguyen, H. M.; Luo, L. Org. Lett. 2020, 22, 6719.

    43. [43]

      Khrizanforov, M.; Gryaznova, T.; Sinyashin, O.; Budnikova, Y. J. Organomet. Chem. 2012, 718, 101.

    44. [44]

      Dudkina, Y. B.; Mikhaylov, D. Y.; Gryaznova, T. V.; Sinyashin, O. G.; Vicic, D. A.; Budnikova, Y. H. Eur. J. Org. Chem. 2012, 11, 2114.

    45. [45]

      Dudkina, Y. B.; Khrizanforov, M. N.; Gryaznova, T. V.; Budnikova, Y. H. J. Organomet. Chem. 2014, 751, 301.

    46. [46]

      Takahira, Y.; Chen, M.; Kawamata, Y.; Mykhailiuka, P.; Nakamura, H.; Peters, B. K.; Reisberg, S. H.; Li, C.; Chen, L.; Hoshikawad, T.; et al. Synlett 2019, 30, 1178.

  • 加载中
    1. [1]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    2. [2]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    8. [8]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    9. [9]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    10. [10]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    11. [11]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    14. [14]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    18. [18]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    19. [19]

      Weihua Jiang Yongsheng Zhou Qiaoqiao Teng . Progressive Teaching Model in the Practice and Exploration of Ideological and Political Education in Laboratory Courses: Taking the Organic Chemistry Experiment “Synthesis of Aspirin” as an Example. University Chemistry, 2024, 39(2): 99-104. doi: 10.3866/PKU.DXHX202306028

    20. [20]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

Metrics
  • PDF Downloads(16)
  • Abstract views(1184)
  • HTML views(290)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return