Citation: Zhipeng A. Wang,  Xuan Zhang,  Ziliang Che,  Zhenxiong Jiang,  Xinyu Ma. Discussion on the Application of Novel Protein Post-Translational Modification Discovered by Mass Spectrometry in Chemistry and Biology Education[J]. University Chemistry, ;2021, 36(6): 200607. doi: 10.3866/PKU.DXHX202006075 shu

Discussion on the Application of Novel Protein Post-Translational Modification Discovered by Mass Spectrometry in Chemistry and Biology Education

  • Rapid development of mass spectrum technology (MS) brings about its wide applications in many fields such as chemistry, material science and life sciences, and its application in biochemistry and chemical biology have been greatly expanding the knowledge of novel protein post-translation modification (PTM). This manuscript starts from the basic principles of mass spectrum and later elaborates the application of MS in discovering lysine post-translation modifications over histones as model proteins, showing a path incorporating fundamental organic chemistry and biochemistry knowledge into cutting-edge researches. By analyzing roles of mass spectrum throughout post-translation modification studies under different research logistics, this manuscript was aimed to help establishing a way of thinking that associates fundamental chemistry and biology education with practical applications for students.
  • 加载中
    1. [1]

      Arnaudo, A. M.; Molden, R. C.; Garcia, B. A. Crit. Rev. Biochem. Mol. Biol. 2011, 46 (4), 284.

    2. [2]

      Strahl, B. D.; Allis, C. D. Nature 2000, 403 (6765), 41.

    3. [3]

      Filippakopoulos, P.; Knapp, S. Nat. Rev. Drug Discov. 2014, 13 (5), 337.

    4. [4]

    5. [5]

    6. [6]

      Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F. Science 1989, 246 (4926), 64.

    7. [7]

      Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Rapid Commun. Mass Spectrom 1988, 2, 151.

    8. [8]

      Steen, H.; Mann, M. Nat. Rev. Mol. Cell Biol. 2004, 5 (9), 699.

    9. [9]

    10. [10]

      Chen, Y.; Chen, W.; Cobb, M. H.; Zhao, Y. Proc. Natl. Acad. Sci. USA 2009, 106 (3), 761.

    11. [11]

      Allfrey, V. G.; Faulkner, R.; Mirsky, A. E. Proc. Natl. Acad. Sci. USA 1964, 51 (5), 786.

    12. [12]

      Gershey, E. L.; Vidali, G.; Allfrey, V. G. J. Biol. Chem. 1968, 243 (19), 5018.

    13. [13]

      Huang, H.; Lin, S.; Garcia, B. A.; Zhao, Y. Chem. Rev. 2015, 115 (6), 2376.

    14. [14]

      Chen, Y.; Sprung, R.; Tang, Y.; Ball, H.; Sangras, B.; Kim, S. C.; Falck, J. R.; Peng, J.; Gu, W.; Zhao, Y. Mol. Cell Proteomics 2007, 6 (5), 812.

    15. [15]

      Xie, Z.; Dai, J.; Dai, L.; Tan, M.; Cheng, Z.; Wu, Y.; Boeke, J. D.; Zhao, Y. Mol. Cell Proteomics 2012, 11 (5), 100.

    16. [16]

      Tan, M.; Peng, C.; Anderson, K. A.; Chhoy, P.; Xie, Z.; Dai, L.; Park, J.; Chen, Y.; Huang, H.; Zhang, Y.; et al. Cell Metab. 2014, 19 (4), 605.

    17. [17]

    18. [18]

      Huang, H.; Zhang, D.; Wang, Y.; Perez-Neut, M.; Han, Z.; Zheng, Y. G.; Hao, Q.; Zhao, Y. Nat. Commun. 2018, 9 (1), 3374.

    19. [19]

      Wisniewski, J. R.; Zougman, A.; Mann, M. Nucleic Acids Res. 2008, 36 (2), 570.

    20. [20]

      Jiang, T.; Zhou, X.; Taghizadeh, K.; Dong, M.; Dedon, P. C. Proc. Natl. Acad. Sci. US 2007, 104 (1), 60.

    21. [21]

      Sabari, B. R.; Zhang, D.; Allis, C. D.; Zhao, Y. Nat. Rev. Mol. Cell Biol. 2017, 18 (2), 90.

    22. [22]

      Dai, L.; Peng, C.; Montellier, E.; Lu, Z.; Chen, Y.; Ishii, H.; Debernardi, A.; Buchou, T.; Rousseaux, S.; Jin, F.; et al. Nat. Chem. Biol. 2014, 10 (5), 365.

    23. [23]

      Xie, Z.; Zhang, D.; Chung, D.; Tang, Z.; Huang, H.; Dai, L.; Qi, S.; Li, J.; Colak, G.; Chen, Y.; et al. Mol. Cell 2016, 62 (2), 194.

    24. [24]

      Tan, M.; Luo, H.; Lee, S.; Jin, F.; Yang, J. S.; Montellier, E.; Buchou, T.; Cheng, Z.; Rousseaux, S.; Rajagopal, N.; et al. Cell 2011, 146 (6), 1016.

    25. [25]

      Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; et al. Nature 2019, 574 (7779), 575.

    26. [26]

      Galligan, J. J.; Rose, K. L.; Beavers, W. N.; Hill, S.; Tallman, K. A.; Tansey, W. P.; Marnett, L. J. J. Am Chem. Soc. 2014, 136 (34), 11864.

    27. [27]

      Castro, J. P.; Jung, T.; Grune, T.; Siems, W. Free Radic Biol. Med. 2017, 111, 309.

    28. [28]

      Sabari, B. R.; Zhang, D.; Allis, C. D.; Zhao, Y. Nat. Rev. Mol. Cell Biol. 2017, 18 (2), 90.

    29. [29]

      Huang, J. X.; Lee, G.; Cavanaugh, K. E.; Chang, J. W.; Gardel, M. L.; Moellering, R. E. Nat. Methods 2019, 16 (9), 894.

    30. [30]

      Moellering, R. E.; Cravatt, B. F. Science 2013, 341 (6145), 549.

    31. [31]

      Wang, Z. P.; Wang, Y. H.; Chu, G. C.; Shi, J.; Li, Y. M. Curr. Org. Synth. 2015, 12 (2), 150.

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

    37. [37]

      Wang, Z. A.; Millard, C. J.; Lin, C.-L.; Gurnett, J. E.; Wu, M.; Lee, K.; Fairall, L.; Schwabe, J. W. R.; Cole, P. A. elife 2020, 9, e57663.

    38. [38]

  • 加载中
    1. [1]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    2. [2]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    3. [3]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    4. [4]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    5. [5]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    6. [6]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    7. [7]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    8. [8]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    9. [9]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    10. [10]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    11. [11]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    12. [12]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    13. [13]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    14. [14]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    15. [15]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    16. [16]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    17. [17]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    18. [18]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

Metrics
  • PDF Downloads(3)
  • Abstract views(830)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return