Citation: Mingyu Yang. Progress in Synthesis of Pyrrolidine Derivatives by Hofmann-Löffler-Freytag Type Reactions[J]. University Chemistry, ;2021, 36(6): 200603. doi: 10.3866/PKU.DXHX202006030 shu

Progress in Synthesis of Pyrrolidine Derivatives by Hofmann-Löffler-Freytag Type Reactions

  • Nitrogen-containing heterocycles exist widely in natural products, pharmaceuticals and optical materials. These molecules often exhibit high levels of biological and optical activities. Especially, the pyrrolidine derivatives are privileged structural units existed in natural products and pharmaceuticals. Therefore, the development of efficient methods to construct this ubiquitous structure unit is highly desirable. This paper introduces the development of Hofmann-Löffler-Freytag (HLF) reaction in synthesis of pyrrolidine derivatives. The major contents are including two aspects:1) Halogen-mediated HLF reactions; 2) Non halogen-mediated HLF reactions.
  • 加载中
    1. [1]

      Jeffrey, J. L.; Sarpong, R. Chem. Sci. 2013, 4, 4092.

    2. [2]

      Yuan, J.; Liu, C.; Lei, A. Chem. Commun. 2015, 51, 1394.

    3. [3]

      Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117 (13), 9247.

    4. [4]

      Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.

    5. [5]

      Wei, J.; Han, B.; Guo, Q.; Shi, X.; Wang, W.; Wei, N. Angew. Chem. Int. Ed. 2010, 49, 8209.

    6. [6]

      Steele, J. C. P.; Veitch, N. C.; Kite, G. C.; Simmonds, S. J. M.; Warhurst, D. C. J. Nat. Prod. 2002, 65, 85.

    7. [7]

      Nicolaou, K. C.; Dalby, S. M.; Majumder, U. J. Am. Chem. Soc. 2008, 130, 14942.

    8. [8]

      Türkmen, Y. E.; Gravel, M.; Rawal, V. H. J. Org. Chem. 2016, 81, 10454.

    9. [9]

      Mori, M.; Kuroda, S.; Zhang, C.-S.; Sato, Y. J. Org. Chem. 1997, 62, 3263.

    10. [10]

      Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1879, 12, 984.

    11. [11]

      Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1881, 14, 2725.

    12. [12]

      Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1883, 16, 558.

    13. [13]

      Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1885, 18, 5.

    14. [14]

      Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1885, 18, 109.

    15. [15]

      Löffler, K. Ber. Dtsch. Chem. Ges. 1910, 43, 2035.

    16. [16]

      Löffler, K.; Freytag, C. Ber. Dtsch. Chem. Ges. 1909, 42, 3427.

    17. [17]

      Löffler, K.; Kaim, H. Ber. Dtsch. Chem. Ges. 1909, 42, 94.

    18. [18]

      Löffler, K.; Kober, S. Ber. Dtsch. Chem. Ges. 1909, 42, 3431.

    19. [19]

      Wolff, M. E. Chem. Rev. 1963, 63, 55.

    20. [20]

      Betancor, C.; Concepcion, J. I.; Hernandez, R.; Salazar. J. A.; Suárez, E. J. Org. Chem. 1983, 48, 4430.

    21. [21]

      Carrau, R.; Hernández, R.; Suárez, E.; Betancor, C. J. Chem. Soc., Perkin Trans. 1 1987, 937.

    22. [22]

      Francisco, C. G.; Herrera, A. J.; Suárez, E. J. Org. Chem. 2003, 68, 1012.

    23. [23]

      Hernández, R.; Rivera, A.; Salazar, A.; Suárez, E. J. Chem. Soc. Chem. Commun. 1980, 958.

    24. [24]

      Fan, R.; Pu, D.; Wen, F.; Wu, J. J. Org. Chem. 2007, 72, 8994.

    25. [25]

      Paz, N. R.; Rodíguez-Sosa, D.; Valdés, H.; Marticorena, R.; Melián, D.; Copano, M. B.; González, C. C.; Herrera, A. J. Org. Lett. 2015, 17, 2370.

    26. [26]

      Martínez, C.; Muñiz, K. Angew. Chem. Int. Ed. 2015, 54, 8287.

    27. [27]

      Duhamel, T.; Stein, C. J.; Martínez, C. Reiher, M.; Muñiz, K. ACS Catal. 2018, 8, 3918.

    28. [28]

      Castillo, E. D.; Muñiz, K. Org. Lett. 2019, 21, 705.

    29. [29]

      Qin, Q.; Yu, S. Org. Lett. 2015, 17, 1894.

    30. [30]

      O'Broin, C. Q.; Fernández, P.; Martínez, C.; Muñiz, K. Org. Lett. 2016, 18, 436.

    31. [31]

      Bafaluy, D.; Muñoz-Molina, J. M.; Funes-Ardoiz, I.; Herold, S.; de Aguirre, A. J.; Zhang, H.; Maseras, F.; Belderrain, T.; Pérez, P. J.; Muñiz, K. Angew. Chem. Int. Ed., 2019, 58, 8912.

    32. [32]

      Wappes, E. A.; Fosu, S. C.; Chopko, T. C.; Nagib, D. A. Angew. Chem. Int. Ed. 2016, 55, 9974.

    33. [33]

      Becker, P.; Duhamel, T.; Martínez, C.; Muñiz, K. Angew. Chem. Int. Ed. 2018, 57, 5166.

    34. [34]

      Nikishin, G. I.; Troyansky, E. I.; Lazareva, M. I. Tetrahedron 1985, 41, 4279.

    35. [35]

      Meng, D.; Tang, Y.; Wei, J.; Shi, X.; Yang, M. Chem. Commun. 2017, 53, 5744.

  • 加载中
    1. [1]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    4. [4]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    5. [5]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    6. [6]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    7. [7]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    8. [8]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    11. [11]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    12. [12]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    13. [13]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    16. [16]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    17. [17]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    18. [18]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    19. [19]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    20. [20]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

Metrics
  • PDF Downloads(14)
  • Abstract views(1390)
  • HTML views(259)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return