Citation:
LIU Zonghuai, HE Xuexia, CHEN Pei. Teaching Practice and Experience of 6s2 Inert Pair Effect in Inorganic Chemistry Course[J]. University Chemistry,
;2018, 33(6): 48-52.
doi:
10.3866/PKU.DXHX201801037
-
During the teaching process of 6s2 inert pair effect in the course of inorganic chemistry, three teaching principles, "theorization, intuition and regularity", have been proposed accordingly. By using these principles, students can understand and master the concept of 6s2 inertia pair effect in a relatively relax atmosphere. In addition, the gap between the widely spread knowledge points as well as the difficulty of learning and the understanding ability of the students is reduced successfully. Meanwhile, the use of these principles is very helpful to cultivate students' abilities of comprehensive induction, and finding and solving problems, which can make the students feel the importance of systematicness of knowledge, methodology of solving problems and the ability training.
-
Keywords:
- 6s2 inert pair effect,
- Inorganic chemistry,
- Teaching process
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[1]
-
-
-
[1]
Gonglan Ye , Xia Yin , Feng Xu , Peng Yang , Yingpeng Wu , Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071
-
[2]
Xia Zhang , Xiaoguang Sang , Jinxia Wang , Hao Meng . Problem-Driven Inorganic Chemistry Course Teaching Practice Integrating Industry,Academia,and Research. University Chemistry, 2024, 39(10): 369-376. doi: 10.12461/PKU.DXHX202310027
-
[3]
Maiyong Zhu , Shuping Wu . 新工科背景下无机化学课程思政教学初探. University Chemistry, 2025, 40(6): 101-110. doi: 10.12461/PKU.DXHX202409116
-
[4]
Weigang Zhu , Xiaofei Ma , Yun Tian , Huaji Liu , Fanli Lu , Yalu Ma . 基于知识图谱的“无机化学与化学分析”课程信息化教学资源构建与应用研究. University Chemistry, 2025, 40(6): 9-15. doi: 10.12461/PKU.DXHX202408113
-
[5]
Ling Li , Guocheng Wang . 知识图谱与AI助教在无机化学混合式教学中的初步探索——以“沉淀溶解平衡”的教学为例. University Chemistry, 2025, 40(6): 1-8. doi: 10.12461/PKU.DXHX202407063
-
[6]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[7]
Fangdong Hu , Xiaolei Jiang . Research and Practice of the “Integration of Theory and Practice Drives Innovation” Teaching Mode in Inorganic Chemistry under the Background of “Four New” Construction. University Chemistry, 2024, 39(11): 1-8. doi: 10.3866/PKU.DXHX202402013
-
[8]
Qin Kuang , Lansun Zheng , Yaxian Zhu . Overall Design of the Inorganic Chemistry Course for the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 14-21. doi: 10.12461/PKU.DXHX202408071
-
[9]
Zhuoxi Li , Jieshu Wei , Yanqin Cheng . Practice of Integrating Ideological and Political Education into Inorganic Chemistry Curriculum. University Chemistry, 2024, 39(2): 255-262. doi: 10.3866/PKU.DXHX202308084
-
[10]
Chi Zhang , Suqi Wu , An Liu , Wei Zhang , Xiao Wei . Application of Team-Based Learning Teaching Method in Inorganic Chemistry Course: the Design Case of Inorganic Chemistry Teaching in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 89-95. doi: 10.12461/PKU.DXHX202409135
-
[11]
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
-
[12]
Huan Zhang , Linyu Pu , Wei Wang , Yatang Dai , Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010
-
[13]
Yuanhong Zhang , Lin Jiang , Yanfang Wang , Chengxia Miao , Lili Zhang , Yijing Li , Junling Duan , Juying Hou , Qin Hou , Fuxian Wan . Exploration and Practice of Teaching Reform in Inorganic Chemistry within the New Agricultural Sciences Framework. University Chemistry, 2024, 39(8): 72-77. doi: 10.3866/PKU.DXHX202312060
-
[14]
Ying Wang , Quanguo Zhai , Zhiqiang Wang , Qingjuan Lei , Shengli Gao . 无机化学中“碱金属元素”教学内容的重构. University Chemistry, 2025, 40(6): 85-92. doi: 10.12461/PKU.DXHX202407049
-
[15]
Changsheng Lu . Discovering-and-Sharing Model: a Case of the Inorganic Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 78-83. doi: 10.12461/PKU.DXHX202408028
-
[16]
Wenwei Zhang , Yanping Ren , Weihong Li , Xiaohang Qiu , Mei Shi , Yuwen Liu , Zhilin Wang . Suggestions on Teaching Contents and Requirements of Inorganic Chemistry Experiment for Chemistry Majors in Higher Education. University Chemistry, 2025, 40(5): 23-31. doi: 10.12461/PKU.DXHX202405120
-
[17]
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
-
[18]
Yajun Jian , Quanguo Zhai , Quan Gu , Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006
-
[19]
Duo Yang , Xiangchun Li , Wenyong Lai . Reform and Practice of a Diversified Teaching Model for Inorganic Chemistry Laboratory Focused on Innovation Ability Cultivation. University Chemistry, 2025, 40(4): 208-214. doi: 10.12461/PKU.DXHX202406006
-
[20]
Ping Cai , Yaxian Zhu , Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027
-
[1]
Metrics
- PDF Downloads(17)
- Abstract views(734)
- HTML views(82)