功能化磁性纳米材料在磷酸化肽富集中的应用

熊芳芳 江丹丹 贾琼

引用本文: 熊芳芳,  江丹丹,  贾琼. 功能化磁性纳米材料在磷酸化肽富集中的应用[J]. 色谱, 2020, 38(1): 60-65. doi: 10.3724/SP.J.1123.2019.06019 shu
Citation:  XIONG Fangfang,  JIANG Dandan,  JIA Qiong. Application of functionalized magnetic nanomaterials in phosphopeptide enrichment[J]. Chinese Journal of Chromatography, 2020, 38(1): 60-65. doi: 10.3724/SP.J.1123.2019.06019 shu

功能化磁性纳米材料在磷酸化肽富集中的应用

  • 基金项目:

    吉林大学超分子结构与材料国家重点实验室开放课题(sklssm2019020).

摘要: 蛋白质磷酸化是最重要和最普遍的翻译后修饰之一。基于质谱的技术已成为分析蛋白质磷酸化的重要手段。然而,磷酸化肽固有的低丰度和电离效率以及由非磷酸化肽共存引起的严重抑制使得直接质谱分析仍然是一个挑战。为解决此问题,需在质谱分析前对磷酸化蛋白质进行选择性富集。磁性纳米材料具有良好的磁响应性,可以在外界磁铁的帮助下实现与溶液的迅速分离。功能化磁性纳米材料作为一种新型的分析技术已在蛋白质组学研究中得到广泛的应用。该文就近年来对磁性纳米粒子进行各种功能化修饰以提高其特异性吸附能力的吸附材料在磷酸化肽的富集方面的应用予以综述,并展望了功能化磁性纳米材料在磷酸化肽富集领域的应用前景。

English

    1. [1] Pawson T. Cell, 2004, 116(2):191

    2. [2] Hunter T. Cell, 2000, 100(1):113

    3. [3] Wiseman R L, Kelly J W. Science, 2011, 332(6025):44

    4. [4] Steen H, Jebanathirajah J A, Rush J, et al. Mol Cell Proteomics, 2006, 5(1):172

    5. [5] Qing G, Lu Q, Li X, et al. Nat Commun, 2017, 8(1):461

    6. [6] Irish J M, Hovland R, Krutzik P O, et al. Cell, 2004, 118(2):217

    7. [7] Domon B, Aebersold R. Science, 2006, 312(5771):212

    8. [8] Lopez E, Lopez I, Ferreira A, et al. Proteome Sci, 2011, 9(1):27

    9. [9] Menschaert G, Vandekerckhove T T M, Baggerman G, et al. J Proteome Res, 2010, 9(5):2051

    10. [10] Aebersold R, Mann M. Nature, 2003, 422(6928):198

    11. [11] Dong M, Wu M, Wang F, et al. Anal Chem, 2010, 82(7):2907

    12. [12] Li X S, Yuan B F, Feng Y Q. TrAC-Trends in Anal Chem, 2016, 78:70

    13. [13] Yan Y, Zheng Z, Deng C, et al. Anal Chem, 2013, 85(18):8483

    14. [14] Shen H L, Alimu K. Chinese Journal of Chromatography, 2018, 36(4):334 申惠莲, 卡哈尔·阿里木. 色谱, 2018, 36(4):334

    15. [15] Wang M, Sun X, Li Y, et al. Proteomics, 2016, 16(6):915

    16. [16] Da G X, Wang D, Wang Y, et al. Chinese Journal of Chromatography, 2019, 37(4):376 戴国鑫, 王迪, 王彦, 等. 色谱, 2019, 37(4):376

    17. [17] Jiang D D, Ma J T, Jia Q. Chinese Journal of Chromatography, 2019, 37(3):247 江丹丹, 马玖彤, 贾琼. 色谱, 2019, 37(3):247

    18. [18] Gupta A K, Gupta M. Biomaterials, 2005, 26(18):3995

    19. [19] Shao M, Ning F, Zhao J, et al. J Am Chem Soc, 2012, 134(2):1071

    20. [20] Xie H Y, Zhen R, Wang B, et al. J Phy Chem C, 2010, 114(11):4825

    21. [21] Jolivet J P, Chanéac C, Tronc E. Chem Commun, 2004, 5:481

    22. [22] Peng S, Sun S. Angew Chem In Ed, 2007, 46(22):4155

    23. [23] Sun S, Zeng H. J Am Chem Soc, 2002, 124(28):8204

    24. [24] Jana N R, Chen Y, Peng X. Chem Mater, 2004, 16(20):3931

    25. [25] Langevin D. Annu Rev Phys Chem, 1992, 43(1):341

    26. [26] Bee A, Massart R, Neveu S. J Magn Magn Mater. 1995, 149(1/2):6

    27. [27] Hyeon T, Lee S S, Park J, et al. J Am Chem Soc, 2001, 123(51):12798

    28. [28] Giri S, Samanta S, Maji S, et al. J Magn Magn Mater, 2005, 285(1/2):296

    29. [29] Wang J, Sun J, Sun Q, et al. Mater Res Bull, 2003, 38(7):1113

    30. [30] Jézéquel D, Guenot J, Jouini N, et al. J Mater Res, 1995, 10(1):77

    31. [31] Tsodikov M V, Ellert O G, Nikolaev S A, et al. J Nanopart Res, 2018, 20(3):86

    32. [32] Sriram B, Govindasamy M, Wang S F, et al. Ultrason Sonochem, 2019:104618

    33. [33] Meng F, Wang H, Chen Z, et al. Nano Res, 2018, 11(5):2847

    34. [34] Sarma L, Sarmah T, Aomoa N, et al. J Phys D:Appl Phys, 2018, 51(19):195003

    35. [35] Hayashi K, Ono K, Suzuki H, et al. Small, 2010, 6(21):2384

    36. [36] Jäger C, Mutschke H, Huisken F, et al. Appl Phys A, 2006, 85(1):53

    37. [37] Zhu Y, Ikoma T, Hanagata N, et al. Small, 2010, 6(3):471

    38. [38] Cao Z, Yang L, Ye Q, et al. Langmuir, 2013, 29(22):6509

    39. [39] Majeed M I, Lu Q, Yan W, et al. J Mater Chem B, 2013, 1(22):2874

    40. [40] Shen M, Cai H, Wang X, et al. Nanotechnology, 2012, 23(10):105601

    41. [41] Ray J R, Lee B, Baltrusaitis J, et al. Environ Sci Technol, 2012, 46(24):13167

    42. [42] Dias A, Hussain A, Marcos A S, et al. Biotechnol Adv, 2011, 29(1):142

    43. [43] Moscoso-Londoño O, Gonzalez J S, Muraca D, et al. Eur Polym J, 2013, 49(2):279

    44. [44] Prashant C, Dipak M, Yang C T, et al. Biomater, 2010, 31(21):5588

    45. [45] Zheng X, Zhou S, Xiao Y, et al. Colloids Surf B, 2009, 71(1):67

    46. [46] Wang Q, Zhang J, Wang A. RSC Adv, 2013, 3(45):23423

    47. [47] Lan F, Liu K X, Jiang W, et al. Nanotechnology, 2011, 22(22):225604

    48. [48] Pinho S L C, Laurent S, Rocha J, et al. J Phy Chem C, 2012, 116(3):2285

    49. [49] Pinho S L C, Pereira G A, Voisin P, et al. ACS Nano, 2010, 4(9):5339

    50. [50] Bae H, Ahmad T, Rhee I, et al. Nanoscale Res Lett, 2012, 7(1):44

    51. [51] Lei C, Han F, Li D, et al. Nanoscale, 2013, 5(3):1168

    52. [52] Zhang X, Wang J, Li R, et al. Ind Eng Chem Res, 2013, 52(30):10152

    53. [53] Tang S, Chia G H, Chang Y, et al. Anal Chem, 2014, 86(22):11070

    54. [54] Jabeen F, Najam-ul-Haq M, Rainer M, et al. Anal Chem, 2015, 87(9):4726

    55. [55] Qi X, Chang C, Xu X, et al. J Chromatogr A, 2016, 1468:49

    56. [56] Zhao X, Shi Y, Wang T, et al. J Chromatogr A, 2008, 1188(2):140

    57. [57] Zhou S, Song N, Lv X, et al. Microchim Acta, 2017, 184(9):3497

    58. [58] Hong Y, Pu C, Zhao H, et al. Nanoscale, 2017, 9(43):16764

    59. [59] Li Y, Yang C X, Yan X P. Chem Commun, 2017, 53(16):2511

    60. [60] Zhou G, Wang D W, Li F, et al. Chem Mater, 2010, 22(18):5306

    61. [61] Wu Z S, Yang S, Sun Y, et al. J Am Chem Soc, 2012, 134(22):9082

    62. [62] Sheng S, Liu W, Zhu K, et al. J Colloid Interf Sci, 2019, 536:235

    63. [63] Lian P, Zhu X, Xiang H, et al. Electrochim Acta, 2010, 56(2):834

    64. [64] Yang X, Zhang X, Ma Y, et al. J Mater Chem, 2009, 19(18):2710

    65. [65] Shao L, Wang X, Ren Y, et al. Chem Eng J, 2016, 286:311

    66. [66] Wang J, Li J, Gao M, et al. Nanoscale, 2017, 9(30):10750

    67. [67] Chen C T, Chen Y C. Anal Chem, 2005, 77(18):5912

    68. [68] Chen C T, Chen Y C. J Biomed Nanotechnol, 2008, 4(1):73

    69. [69] Chen C T, Chen W Y, Tsai P J, et al. J Proteome Res, 2007, 6 (1):316

    70. [70] Lo C Y, Chen W Y, Chen C T, et al. J Proteome Res, 2007, 6 (2):887

    71. [71] Li Y, Leng T H, Lin H Q, et al. J Proteome Res, 2007, 6 (11):4498

    72. [72] Li Y, Lin H Q, Deng C H, et al. J Proteome Res, 2008, 8(2):238

    73. [73] Li Y, Liu Y, Tang J, et al. J Chromatogr A, 2007, 1172:57

    74. [74] Li Y, Lin H, Deng C, et al. Proteomics, 2008, 8(2):238

    75. [75] Lu J, Qi D, Deng C, et al. Nanoscale, 2010, 2(10):1892

    76. [76] He X M, Zhu G T, Li X S, et al. Analyst, 2013, 138(18):5495

    77. [77] Xu D, Yan G, Gao M, et al. Anal Bioanal Chem, 2017, 409(6):1607

    78. [78] Lu J, Wang M, Deng C, et al. Talanta, 2013, 105:20

    79. [79] Li W, Deng Q, Fang G, et al. J Mater Chem B, 2013, 1(14):1947

    80. [80] Wang M, Sun X, Li Y, et al. Proteomics, 2016, 16(6):915

    81. [81] Chen X, Li S, Zhang X, et al. Nanoscale, 2015, 7(13):5815

    82. [82] Chen C T, Wang L Y, Ho Y P. Anal Bioanal Chem, 2011, 399(8):2795

    83. [83] Zhang Y, Wang H, Lu H. Mol BioSyst, 2013, 9(3):492

    84. [84] Deng Q, Wu J, Chen Y, et al. J Mater Chem B, 2014, 2(8):1048

    85. [85] Xiong Z, Chen Y, Zhang L, et al. ACS Appl Mater Interf, 2014, 6(24):22743

    86. [86] Jiang D, Li Z, Jia Q. Anal Chim Acta, 2019, 106:58

    87. [87] Jiang D, Li X, Jia Q. ACS Sustain Chem Eng, 2019, 7(1):421

    88. [88] Jiang D, Li X, Lv X, et al. Talanta, 2018, 185:461

    89. [89] Jiang D, Li X, Ma J, et al. Talanta, 2018, 180:368

    90. [90] Jiang D, Song N, Li X, et al. Proteomics, 2017, 17(17/18):1700213

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  102
  • HTML全文浏览量:  4
文章相关
  • 收稿日期:  2019-06-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章