Citation: HE Yuchen, WU Xuejing, KONG Fanzhi, CAO Chengxi, FAN Liuyin, XIAO Hua. Accurate empirical equation of ionic mobility from electrolytic conductance[J]. Chinese Journal of Chromatography, ;2016, 34(6): 625-634. doi: 10.3724/SP.J.1123.2016.03003 shu

Accurate empirical equation of ionic mobility from electrolytic conductance

  • Corresponding author: FAN Liuyin, lyfan@sjtu.edu.cn XIAO Hua, huaxiao@sjtu.edu.cn
  • Received Date: 3 March 2016

    Fund Project: National Natural Science Foundation of China Nos. 21275099, 21305087, 21475086

  • Detection of electrolytic conductivity can be accurately and simply performed. If such detection can be used for the study of ionic mobility, it may supply an accurate, simple and cheap method for the study. This work develops a novel theoretical method for such a study with electrolytic conductivity. An empirical equation for mono-valent ionic mobility is chosen as the studied target. By adequate data of conductivity of 19 mono-mono-valent electrolytes, we correct the empirical equation with near 10% maximum bias as an accurate one with 5% maximum bias with no more than 0.05 mol/L ionic strength. The predictions with the corrected equation are in good agreement with the exact mobilities of salt ions detected by moving boundary method and in high coincidence with the precise mobilities of the 32 large organic ions obtained by the Lucy's equation. Thus, the work also shows the high agreement among the conductivities and mobilities of the 19 small inorganic and the 32 large organic ions. A more accurate equation with 2% maximum deviation is given under the ionic strength of 0.02 mol/L. The advanced approach holds the special advantages. Firstly, adequate electrolytic conductivities in references can be used for the study of ionic mobility. Secondly, it makes the further study very easy due to the simple detection of the electrolyte conductivity.
  • 加载中
    1. [1]

      Biswas R, Bagchi B. J Chem Phys, 1997, 106:5587

    2. [2]

      Bagchi B, Biswas R. Acc Chem Res, 1998, 31:181

    3. [3]

      Kataoka H, Saito Y, Sakai T, et al. J Phys Chem B, 2001, 105:2546

    4. [4]

      Furlanetto S, Lanteri S, Orlandini S, et al. J Pharm Biomed Anal, 2007, 43:1388

    5. [5]

      Furlanetto S, Lanteri S, Orlandini S, et al. J Pharm Biomed Anal, 2007, 43:1402

    6. [6]

      Miller J M, Blackburn A C, Shi Y, et al. Electrophoresis, 2002, 23:2833

    7. [7]

      Longsworth L. J Am Chem Soc, 1945, 67:1109

    8. [8]

      Alberty R A. J Am Chem Soc, 1950, 72:2361

    9. [9]

      Nichol J. J Am Chem Soc, 1950, 72:2367

    10. [10]

      Cao C X. J Chromatogr A, 1998, 813:153

    11. [11]

      MacInnes D A, Longsworth L G. Chem Rev, 1932, 11:172

    12. [12]

      Wang H, Shi Y, Yan J, et al. Anal Chem, 2014, 86:2888

    13. [13]

      Zhang L X, Cao Y R, Xiao H, et al. Biosens Bioelectron, 2016, 77:284

    14. [14]

      Dong J, Li S, Wang H, et al. Anal Chem. 2013, 85:5884

    15. [15]

      Porras S P, Riekkola M L, Kenndler E. J Chromatogr A, 2001, 905:259

    16. [16]

      Jouyban A, Grosse S, Chan H, et al. J Chromatogr A, 2003, 994:191

    17. [17]

      Bekri S, Leclercq L, Cottet H. J Chromatogr A, 2016, 1432:145

    18. [18]

      Ibrahim A, Allison S A, Cottet H. Anal Chem, 2012, 84:9422

    19. [19]

      Castagnola M, Rossetti D V, Corda M, et al. Electrophoresis, 1998, 19:2273

    20. [20]

      Reijenga J, Kenndler E. J Chromatogr A, 1994, 659:403

    21. [21]

      Friedl W, Reijenga J C, Kenndler E. J Chromatogr A, 1995, 709:163

    22. [22]

      Shimizu T, Kenndler E. Electrophoresis, 1999, 20:3364

    23. [23]

      Cao C X. J Chromatogr A, 1997, 771:374

    24. [24]

      Cross R F, Cao J. J Chromatogr A, 1998, 809:159

    25. [25]

      Bier M, Palusinski O, Mosher R, et al. Science, 1983, 219:1281

    26. [26]

      Ermakov S V, Zhukov M Y, Capelli L, et al. Electrophoresis, 1995, 16:2149

    27. [27]

      Cao C X, Zhang W, Qin W H, et al. Anal Chem, 2005, 77:955

    28. [28]

      Chien R L. Anal Chem, 1991, 63:2866

    29. [29]

      Cao C X, He Y Z, Li M, et al. Anal Chem, 2002, 74:4167

    30. [30]

      Allison S A, Pei H, Baek S, et al. Electrophoresis, 2010, 31:920

    31. [31]

      Robinson R A, Strokes R H. Electrolyte Solutions. 2nd ed. London:Butterworths Press, 1965

    32. [32]

      Survay M A, Goodall D M, Wren S A, et al. J Chromatogr A, 1996, 741:99

    33. [33]

      Li D, Fu S, Lucy C A. Anal Chem, 1999, 71:687

    34. [34]

      Jouyban A, Fazeli-Bakhtiyari R, Shayanfar A, et al. Anal Methods, 2015, 7:8123

    35. [35]

      David R L. CRC Handbook of Chemistry and Physics. 73rd ed. Boca Raton:CRC Press, 1992

    36. [36]

      Adamson A W. A Textbook of Physical Chemistry. New York:Academic Press Inc., 1973

    37. [37]

      Moré J J. Lecture Notes in Mathematics, 1978, 630:105

  • 加载中
    1. [1]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    2. [2]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    3. [3]

      Jianan Fang Youhao Gu Zexuan Gui Laiying Zhang Jiawei Yan Ruming Yuan Xiaoming Xu . Experimental Improvement and Expansion of the Electromotive Force Method to Determine the Mean Activity Coefficient of Electrolyte Solution. University Chemistry, 2025, 40(11): 263-271. doi: 10.12461/PKU.DXHX202504055

    4. [4]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    5. [5]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    6. [6]

      Yan Zhang Xiaoyan Cao Yiming Li Shuwei Xia Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027

    7. [7]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-0. doi: 10.3866/PKU.WHXB202308048

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    10. [10]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    11. [11]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    12. [12]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    13. [13]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    14. [14]

      Zhiming Feng Lili Wu Chengming Wang . Doubly Oxidized Carbene. University Chemistry, 2025, 40(9): 326-331. doi: 10.12461/PKU.DXHX202411008

    15. [15]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    16. [16]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    18. [18]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    19. [19]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    20. [20]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

Metrics
  • PDF Downloads(0)
  • Abstract views(494)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return