Citation: YAN Jingyu, GUO Zhimou, DING Junjie, SHEN Aijin, WANG Jixia, JIN Gaowa, LIANG Xinmiao. Analysis of vancomycin and its related impurities by hydrophilic interaction liquid chromatography[J]. Chinese Journal of Chromatography, ;2015, 33(9): 951-956. doi: 10.3724/SP.J.1123.2015.05032 shu

Analysis of vancomycin and its related impurities by hydrophilic interaction liquid chromatography

  • Corresponding author: YAN Jingyu, 
  • Received Date: 26 May 2015

    Fund Project: 国家自然科学基金项目(21207130). (21207130)

  • The current reversed-phase liquid chromatography as the main analytical method for vancomycin is inappropriate due to its poor polarity selectivity and mass spectrometry compatibility. Hydrophilic interaction chromatography (HILIC) method has been verified to provide the glycopeptide substances with good retention and polarity selectivity, therefore, an HILIC method was developed for the analysis of vancomycin and its related impurities including norvancomycin, desvancosaminyl vancomycin, dedichloro vancomycin and crystalline degradation product (CDP-1). In this work, a systematic evaluation of retention behavior of vancomycin and its related impurities in hydrophilic interaction chromatography was performed and the influences of stationary phase, acetonitrile content, buffer salt and pH of mobile phase were studied. According to the results, Click XIon column was selected as stationary phase and ammonium formate was additive in the mobile phase. Vancomycin and its related impurities were totally separated under the optimization conditions. It is concluded that hydrophilic interaction chromatography may be a new strategy for the separation of vancomycin and its structural analogues.
  • 加载中
    1. [1]

      [1] Zhao D, Wei L X. Journal of Southwest University: Natural Science Edition (赵德, 魏丽霞. 西南大学学报: 自然科学版), 2011, 33(3): 167

    2. [2]

      [2] National Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China. Part 2. Beijing: China Medical Science Press (国家药典委员会. 中华人民共和国药典. 二部. 北京: 中国医药科技出版社), 2010: 636

    3. [3]

      [3] Lewis P O, Kirk L M, Brown S D. Am J Health-Syst Pharm, 2014, 71(12): 1029  

    4. [4]

      [4] Nambiar S, Madurawe R D, Zuk S M, et al. Antimicrob Agents Chemother, 2012, 56(6): 2819  

    5. [5]

      [5] Huang X H, Liu Y, Zhang J. Chinese Journal of Drug Application and Monitoring (黄晓会, 刘艳, 张健. 中国药物应用与监测), 2014, 11(2): 92

    6. [6]

      [6] Abu-Shandi K H. Anal Bioanal Chem, 2009, 395(2): 527  

    7. [7]

      [7] Qi Y, Li J Q, Zhao M Q, et al. Journal of Instrumental Analysis (綦艳, 李锦清, 赵明桥, 等. 分析测试学报), 2013, 32(6): 768

    8. [8]

      [8] Hadwiger M E, Sommers C D, Mans D J, et al. Antimicrob Agents Chemother, 2012, 56(6): 2824  

    9. [9]

      [9] Diana J, Visky D, Roets E, et al. J Chromatogr A, 2003, 996(1/2): 115

    10. [10]

      [10] Diana J, Visky D, Hoogmartens J, et al. Rapid Commun Mass Spectrom, 2006, 20(4): 685  

    11. [11]

      [11] Haghedooren E, Diana J, Noszal B, et al. Talanta, 2007, 71(1): 31  

    12. [12]

      [12] Alpert A J. J Chromatogr, 1990, 499: 177  

    13. [13]

      [13] Bernal J, Ares A M, Pol J, et al. J Chromatogr A, 2011, 1218(42): 7438  

    14. [14]

      [14] Kawachi Y, Ikegami T, Takubo H. J Chromatogr A, 2011, 1218(35): 5903  

    15. [15]

      [15] Fu Q, Wang J, Liang T, et al. Chinese Journal of Chromatography (傅青, 王军, 梁图, 等. 色谱), 2013, 31(11): 1051  

    16. [16]

      [16] Li R P, Yuan Q, Huang Y P. Chinese Journal of Chromatography (李瑞萍, 袁琴, 黄应平. 色谱), 2014, 32(7): 675

    17. [17]

      [17] Snyder L R, Poppe H. J Chromatogr, 1980, 184(4): 363  

    18. [18]

      [18] Lu P Z, Lu X M, Li X Z, et al. Chemistry (卢佩章, 卢小明, 李秀珍, 等. 化学通报), 1982(19): 1175

    19. [19]

      [19] Guo X, Zhang X, Guo Z, et al. J Chromatogr A, 2014, 1325: 121  

    20. [20]

      [20] Guo Y, Gaiki S. J Chromatogr A, 2005, 1074(1/2): 71

  • 加载中
    1. [1]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    2. [2]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    3. [3]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    7. [7]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    12. [12]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    13. [13]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    14. [14]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    15. [15]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    16. [16]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    17. [17]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    18. [18]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    19. [19]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    20. [20]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

Metrics
  • PDF Downloads(0)
  • Abstract views(1518)
  • HTML views(240)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return