Citation: FENG Zhengang, ZHANG Jianbin, LI Xinjun, YU Jianying. Determination of the four generic fractions of aged bitumen by thin-layer chromatography with flame ionization detection[J]. Chinese Journal of Chromatography, ;2015, 33(2): 195-200. doi: 10.3724/SP.J.1123.2014.09052 shu

Determination of the four generic fractions of aged bitumen by thin-layer chromatography with flame ionization detection

  • Corresponding author: FENG Zhengang, 
  • Received Date: 8 October 2014
    Available Online: 4 November 2014

    Fund Project: 国家自然科学基金项目(51078300) (51078300)中国博士后科学基金项目(2014M562360) (2014M562360)中央高校基本科研业务费专项资金资助项目(0009-2014G1211001). (0009-2014G1211001)

  • The aging process of bitumen has been paid more and more attention by the researchers. The four generic fractions (saturates, aromatics, resins and asphaltenes) of bitumen change significantly during the aging process. The analysis of the changes of the four generic fractions of bitumen is very helpful to reveal the bitumen aging mechanisms and guide its engineering applications. In this study, the bitumen was aged by thin film oven test (TFOT), pressurized aging vessel (PAV) test and ultraviolet (UV) aging test, respectively. Then the four generic fractions of bitumen before and after aging were analyzed by thin-layer chromatography with flame ionization detection (TLC-FID), which was further compared with the solubility procedures and chromatographic technique (named as Corbett method). The compositions of the expanded solvents were also investigated. Finally, the correlation between the TLC-FID and Corbett method was further studied, which revealed a proper TLC-FID method for detection of aged bitumen. The bitumen solution dissolved by dichloromethane was successively expanded by n-heptane, toluene/n-heptane (80:20, v/v) and toluene/ethanol (55:45, v/v), followed by TLC-FID. This method is of great significance for the analysis of the four generic fractions of bitumen and for the exploration of bitumen aging mechanisms.
  • 加载中
    1. [1]

      [1] Shen A Q. Road Engineering Materials. Beijing: China Communications Press (申爱琴. 道路工程材料. 北京: 人民交通出版社), 2010: 67

    2. [2]

      [2] Feng Z G, Yu J Y, Xue L H, et al. J Appl Polym Sci, 2013, 128(4): 2571  

    3. [3]

      [3] Qin L P. Transport Standardization (秦利萍. 交通标准化), 2011(15): 75

    4. [4]

      [4] Xu J, Hong J X, Liu J P. Petroleum Asphalt (徐静, 洪锦祥, 刘加平. 石油沥青), 2011, 25(4): 1

    5. [5]

      [5] Wu S P, Pang L, Liu G, et al. J Mater Civil Eng, 2010, 22(8): 767  

    6. [6]

      [6] Vargas X A, Afanasjeva N, Álvarez M, et al. Fuel, 2008, 87(13/14): 3018

    7. [7]

      [7] Apeagyei A K. Constr Build Mater, 2011, 25(1): 47  

    8. [8]

      [8] Lesueur D. Adv Colloid Interfac Sci, 2009, 145(1/2): 42

    9. [9]

      [9] Liu J, Li H P, Yang Y H, et al. Journal of Shenyang Architectural and Civil Engineering Institute (刘军, 李和平, 杨彦海, 等. 沈阳建筑工程学院学报), 2004, 20(2): 127

    10. [10]

      [10] Zou Y H, Chen S M, Chen W S. Petroleum Asphalt (邹异红, 陈守明, 陈伟三. 石油沥青), 2009, 23(6): 17

    11. [11]

      [11] Ecker A. Petrol Coal, 2001, 43(1): 51

    12. [12]

      [12] Yang B J, Zheng L, Zhang K Y, et al. Chemical Engineering of Oil and Gas (杨佰娟, 郑立, 张魁英, 等. 石油与天然气化工), 2011, 40(2): 201

    13. [13]

      [13] Du G H, Yang H Y, Lin Y G, et al. Journal of Instrumental Analysis (杜国华, 杨海鹰, 蔺玉贵, 等. 分析测试学报), 2003, 22(3): 81

    14. [14]

      [14] McNally T. Polymer Modified Bitumen: Properties and Characterisation. London: Woodhead Publishing Ltd, 2011: 269

    15. [15]

      [15] Lu X J, Yu X. Modern Transportation Technology (陆晓锦, 于新. 现代交通技术), 2008, 5(4): 1

    16. [16]

      [16] Feng Z G, Yu J Y, Zhang H L, et al. Mater Struct, 2013, 46(7): 1123  

    17. [17]

      [17] Feng Z G, Yu J Y, Liang Y S. Petrol Sci Technol, 2012, 30(14): 1453  

    18. [18]

      [18] Lu X H, Isacsson U. Constr Build Mater, 2002, 16(1): 15  

    19. [19]

      [19] Tan Y Q, Wang J N, Feng Z L, et al. China Journal of Highway and Transport (谭忆秋, 王佳妮, 冯中良, 等. 中国公路学报), 2008, 21(1): 19

  • 加载中
    1. [1]

      Wenhui LiYakun TangYusheng ZhouYue ZhangWenhai ZhangQingtao MaLang LiuSen DongYuliang Cao . Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(10): 100119-0. doi: 10.1016/j.actphy.2025.100119

    2. [2]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    3. [3]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    4. [4]

      Lijun Zhou Dongmei Wang Jiameng Wang Tongjie Yao Mei Qi Yin Kong Yan Song . Teaching Case Design of “Degradation and Aging” as an Ideological and Political Demonstration Course. University Chemistry, 2025, 40(4): 80-86. doi: 10.12461/PKU.DXHX202405113

    5. [5]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    8. [8]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    11. [11]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Lingyu Chang Yanfang Lang Yuyan Zhu Jie Wang Ying Guo Die Wang Peng Ding Yueming Zhou Zhixiang Gong Shujuan Liu . Machine Learning-Optimized Microcolumn Ion Exchange Chromatography for Trace Arsenic Determination. University Chemistry, 2026, 41(1): 76-84. doi: 10.12461/PKU.DXHX202506023

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Xiqing Liang Tian Zhao Jiawei Li Haohui Tan Hai Chen Liyan Zeng . Pentaerythritol’s Journey of Making Friends. University Chemistry, 2025, 40(10): 175-185. doi: 10.12461/PKU.DXHX202412009

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    18. [18]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    19. [19]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    20. [20]

      Yihong ShaoRongchen ShenSong WangShijie LiPeng ZhangXin Li . Composition engineering in covalent organic frameworks for tailored photocatalysis. Acta Physico-Chimica Sinica, 2025, 41(12): 100176-0. doi: 10.1016/j.actphy.2025.100176

Metrics
  • PDF Downloads(0)
  • Abstract views(692)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return