Citation: Ismet KAYA, Cigdem Yigit PALA. Determination of thermodynamic properties of poly(cyclohexyl methacrylate) by inverse gas chromatography[J]. Chinese Journal of Chromatography, ;2014, 32(7): 746-752. doi: 10.3724/SP.J.1123.2014.04028 shu

Determination of thermodynamic properties of poly(cyclohexyl methacrylate) by inverse gas chromatography

  • Corresponding author: Ismet KAYA, 
  • Received Date: 18 April 2014
    Available Online: 16 May 2014

  • In this work, some thermodynamic properties of poly(cyclohexyl methacrylate) were studied by inverse gas chromatography (IGC). For this purpose, the polymeric substance was coated on Chromosorb W and which was filled into a glass column. The retention times (tr) of the probes were determined from the interactions of poly(cyclohexyl methacrylate) with n-pentane, n-hexane, n-heptane, n-octane, n-decane, methanol, ethanol, 2-propanol, butanol, acetone, ethyl methyl ketone, benzene, toluene and o-xylene by IGC technique. Then, the specific volume (Vg0) was determined for each probe molecule. By using (1/T; lnVg0) graphics, the glass transition temperature of poly(cyclohexyl methacrylate) was found to be 373 K. The adsorption heat under the glass transition temperature (ΔHa), and partial molar heat of sorption above the glass transition (ΔH1S), partial molar free energy of sorption (ΔG1S) and partial molar entropy of sorption (ΔS1S) belonging to sorption for every probe were calculated. The partial molar heat of mixing at infinite dilution (ΔH1), partial molar free energy of mixing at infinite dilution (ΔG1), Flory-Huggins interaction parameter (χ12) and weight fraction activity coefficient (a1/w1) values of polymer-solute systems were calculated at different column temperatures. The solubility parameters (δ2) of the polymer were obtained by IGC technique.
  • 加载中
    1. [1]

      [1] Jang Y S, Kang J W, Byun H S. J Ind Eng Chem, 2010, 16(4): 598  

    2. [2]

      [2] Aydin S. [MS Dissertation]. Istanbul, Turkey: Yildiz Technique University, 2005

    3. [3]

      [3] Shyamala M, Pragati Ranjan S, Sharma J V C. International Journal of Pharma Sciences, 2013, 3(2): 201

    4. [4]

      [4] Guillet J E, Purnel J H. New Developments in Gas Chromatography: 322 Progress in Gas Chromatography. New York, USA: Wiley-Interscience, 1973: 323, 187

    5. [5]

      [5] Smidsrod O, Guillet J E. Macromolecules, 1969, 2(3): 272  

    6. [6]

      [6] Braun J M, Guillet J E. Macromolecules, 1977, 10(1): 101  

    7. [7]

      [7] DiPaola-Baranyi G, Guillet J E. Macromolecules, 1978, 11(1): 228  

    8. [8]

      [8] Galin M, Maslinco L. Macromolecules, 1985, 18(11): 2192  

    9. [9]

      [9] Kaya I, Ozdemir E. Polymer, 1999, 40 (9): 2405  

    10. [10]

      [10] Kaya I. [PhD Dissertation]. Elazig, Turkey: Firat University, 1995

    11. [11]

      [11] Kaya I, Demirelli K. Polymer, 2000, 41(8): 2855  

    12. [12]

      [12] Papadopoulou S K, Panayiotou C. J Chromatogr A, 2012, 1229: 230  

    13. [13]

      [13] Reid C R, Prausnitz J M, Sherwood T K. The Properties of Gases and Liquids. 2nd ed. New York, USA: McGraw-Hill, 1977

    14. [14]

      [14] Kaya I, Ozdemir E, Coskun M. J Macromol Sci A, 1996, A33(1): 37  

    15. [15]

      [15] Guillet J E, Purnel J H. Advances in Analytical Chemistry and Instrumentation Gas Chromatography. New York, USA: John Wiley & Sons, 1973

    16. [16]

      [16] Pala C Y. [MS Dissertation]. Canakkale, Turkey: Canakkale Onsekiz Mart University, 2013

    17. [17]

      [17] Klein J, Jeberien H E. Macromol Chem Phys, 1980, 181(6): 1237  

    18. [18]

      [18] Kaya I, Ilter Z, Senol D. Polymer, 2002, 43(24): 6455  

    19. [19]

      [19] Emam M N, Ahmed E E. Chinese Journal of Chromatography, 2007, 25(6): 871  

    20. [20]

      [20] Bicerano J. Prediction of Polymer Properties. 3rd ed. NewYork, USA: Marcel Dekker, Inc., 2002

  • 加载中
    1. [1]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    2. [2]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    3. [3]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    4. [4]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    5. [5]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    6. [6]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    7. [7]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    8. [8]

      Bowen XuJiahao ChenLulu CuiXinyue LiYuan XueSheng Han . Terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride copolymers: A low dosage and high-efficiency cold flow improver for diesel fuel. Chinese Chemical Letters, 2025, 36(5): 110196-. doi: 10.1016/j.cclet.2024.110196

    9. [9]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    10. [10]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    11. [11]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    12. [12]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    13. [13]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    14. [14]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    15. [15]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    16. [16]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    17. [17]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    18. [18]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    19. [19]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    20. [20]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

Metrics
  • PDF Downloads(0)
  • Abstract views(270)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return