Citation: WANG Jin-Fen, BIAN Chao, TONG Jian-Hua, SUN Ji-Zhou, XIA Shan-Hong. Comparison of Mercury-free Microsensors Based on Gold Nanoparticles for Heavy Metals Detection[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(12): 1791-1796. doi: 10.3724/SP.J.1096.2012.20470 shu

Comparison of Mercury-free Microsensors Based on Gold Nanoparticles for Heavy Metals Detection

  • Corresponding author: XIA Shan-Hong, 
  • Received Date: 5 May 2012
    Available Online: 8 July 2012

    Fund Project: 本文系国家重点基础研究发展规划"973"项目(No.2009CB320300)资助 (No.2009CB320300)

  • This paper presents two kinds of mercury-free electrochemical microsensors for simultaneous detection of heavy metals, which are L-aspartic acid/L-cysteine/gold nanoparticles (Asp/Cys/GNPs/microelectrode chip) and Sn film/gold nanoparticles modified microelectrode chip (Sn/GNPs/microelectrode chip). Electrochemical analysis of metal ions on Asp/Cys/GNPs/microelectrode chip was investigated by square wave voltammetry under the optimized conditions. The microsensor exhibited wide linear range from 5 μg/L to 2000 μg/L for Cu2+ and Pb2+ ions, with limit of detection of 1 μg/L. In situ tin film deposition was used in detection of heavy metals for the forming of alloy with heavy metals. Electrochemical analysis of metal ions on Sn/GNPs/microelectrode chip was investigated by square wave stripping voltammetry. The Sn/GNPs/microelectrode chip showed high sensitivity to Cu2+, Pb2+ and Zn2+ ions. This microsensor revealed good linear behavior in the examined concentration ranges from 5 to 500 μg/L for Cu2+ and Pb2+, from 10 to 500 μg/L for Zn2+, with a limit of detection of 2 μg/L for Cu2+, 3 μg/L for Pb2+ and 5 μg/L for Zn2+. In addition, metal ions detection method using the two kinds of microsensor are green, simple, reused and compatible with the microfluid chip for on-site analysis.
  • 加载中
    1. [1]

      1 Praline J, Guennoc A M, Limousin N, Hallak H, Corcia P. Clin. Neurol. Neurosurg, 2007, 109(10): 880-883

    2. [2]

      2 Xie F Z, Lin X C, Wu X P, Xie Z H. Talanta, 2008, 74(4): 836-843

    3. [3]

      3 Karami H, Mousavi M F, Yamini Y, Shamsipur M. Anal. Chim. Acta, 2004, 509(1): 89-94

    4. [4]

      4 LU Mei-Bin, WANG Bu-Jun, LI Jing-Hai, LI Wei-Xi, YANG Xiu-Lan, SONG Jing-Kei. Spectroscopy and Spectral Analysis, 2012, 32(8): 2234-2237

    5. [5]

      陆美斌, 王步军, 李静海, 李为喜, 杨秀兰, 宋敬可. 光谱学与光谱分析, 2012, 32(8): 2234-2237

    6. [6]

      5 LIU De-Meng, JIN Yan, JIN Qing-Hui, ZHAO Jian-Long. Chinese J. Anal. Chem., 2011, 39(11): 1748-1752

    7. [7]

      刘德盟, 金 妍, 金庆辉, 赵建龙. 分析化学, 2011, 39(11): 1748-1752

    8. [8]

      6 Lin M, Cho M S, Choe W S, Lee Y. Biosens. Bioelectron., 2009, 25(1): 28-33

    9. [9]

      7 Rodrigues J A, Rodrigues C M, Almeida P J, Valente I M, Gon-alves L M, Compton R G, Barros A A. Anal. Chim. Acta, 2011, 701(2): 152-156

    10. [10]

      8 Sherigara B S, Shivaraj Y, Mascarenhas R J, Satpati A K. Electrochim. Acta, 2007, 52(9): 3137-3142

    11. [11]

      9 Yang W R, Gooding J J, Hibbert D B. Analyst, 2001, 126 (9): 1573-1577

    12. [12]

      10 Yang W R, Jaramillo D, Gooding J J, Hibbert D B, Zhang R, Willett G D, Fisher K J. Chem. Commun., 2001, 19 (9): 1982-1983

    13. [13]

      11 Shervedani R K, Mozaffari S A. Anal. Chem., 2006, 78(14): 4957-4963

    14. [14]

      12 GONG Wei-Lei, DU Xiao-Yan, WANG Shu-Ran, JIANG Xian-Chen, SUN Qian. Chinese J. Anal. Chem., 2008, 36(2): 177-181

    15. [15]

      公维磊, 杜晓燕, 王舒然, 姜宪尘, 孙 倩. 分析化学, 2008, 36(2): 177-181

    16. [16]

      13 LI Dong-Yue, JIA Jian-Bo, WANG Jian-Guo. Chinese J. Anal. Chem., 2012, 40(2): 321-327

    17. [17]

      李冬月, 郏建波, 王建国. 分析化学, 2012, 40(2): 321-327

    18. [18]

      14 Svobodova-Tesarova E, Baldrianova L, Stoces M, Svancara I, Vytras K, Hocevar S B, Ogorevc B. Electrochim. Acta, 2011, 56(19): 6673-6677

    19. [19]

      15 Czop E, Economou A, Bobrowski A. Electrochim. Acta, 2011, 56(5): 2206-2212

    20. [20]

      16 Sakai N, Fujiwara Y, Arai M, Yu K, Tatsuma T. J. Electroanal. Chem., 2009, 628(1-2): 7-15

    21. [21]

      17 Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. 2nd ed., New York: Wiley Interscience, 2001: 231

    22. [22]

      18 Enviromental Quality Standards for Surface Water, GB3838-2002

    23. [23]

      地表水环境质量标准, GB3838-2002

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    7. [7]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    8. [8]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    9. [9]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    10. [10]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    13. [13]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    16. [16]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    18. [18]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    19. [19]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    20. [20]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

Metrics
  • PDF Downloads(0)
  • Abstract views(579)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return