Citation: CHEN Yu, WANG Jie, LIU Zhong-Ming. Graphene and Its Derivatives-Based Biosensing System[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(11): 1772-1779. doi: 10.3724/SP.J.1096.2012.20436 shu

Graphene and Its Derivatives-Based Biosensing System

  • Corresponding author: WANG Jie, 
  • Received Date: 23 April 2012
    Available Online: 7 July 2012

    Fund Project: 本文系广东省部学学研项目(No. 2010B090400187) (No. 2010B090400187)传感技术联合国家重点实验室基金课题(No. Skt003)资助 (No. Skt003)

  • Graphene and its derivatives have recently attracted considerable attention because of their vast array of distinct electronic, thermal, mechanical, optical, and electrochemical properties. Thus, this set of compounds has become a research hotspot and a promising area for scientific research. The significantly high carrier mobility, high electrical conductivity, high surface area, ease of functionalization, strong fluorescence quenching, and affinity for biomolecules make graphene and its derivatives suitable in the development of biosensing systems. In our review, we describe the recent applications of graphene and its derivatives to field-effect transistors as well as to electrochemical, piezoelectric, photoluminescence, and electrochemiluminescence biosensing systems.
  • 加载中
    1. [1]

      1 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666-669

    2. [2]

      2 Geim A K. Science, 2009, 324(5934): 1530-1534

    3. [3]

      3 Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22(35): 3906-3924

    4. [4]

      4 Su B, Tang D, Li Q, Tang J, Chen G. Anal. Chim. Acta, 2011, 692(1-2): 116-124

    5. [5]

      5 Lu L M, Li H B, Qu F, Zhang X B, Shen G L, Yu R Q. Biosens. Bioelectron., 2011, 26(8): 3500-3504

    6. [6]

      6 Liu Q, Shi J, Cheng M, Li G, Cao D, Jiang G. Chem. Commun., 2012, 48(13): 1874-1876

    7. [7]

      7 Liu F, Choi J Y, Seo T S. Biosens. Bioelectron., 2010, 25(10): 2361-2365

    8. [8]

      8 Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Chem. Commun., 2006, 442(7100): 282-286

    9. [9]

      9 Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Science, 2007, 315(5817): 1379

    10. [10]

      10 Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Chem. Commun., 2005, 438(7065): 197-200

    11. [11]

      11 Jung J H, Cheon D S, Liu F, Lee K B, Seo T S. Angew. Chem. Int. Edit., 2010, 49(33): 5708-5711

    12. [12]

      12 Loh K P, Bao Q, Eda G, Chhowalla M. Nat. Chem., 2010, 2(12): 1015-1024

    13. [13]

      13 Robinson J T, Perkins F K, Snow E S, Wei Z, Sheehan P E. Nano Lett., 2008, 8(10): 3137-3140

    14. [14]

      14 Shi Y, Huang W T, Luo H Q, Li N B. Chem. Commun., 2011, 47(16): 4676-4678

    15. [15]

      15 Ohno Y, Maehashi K, Matsumoto K. Biosens. Bioelectron., 2010, 26(4): 1727-1730

    16. [16]

      16 Pumera M. Mater. Today, 2011, 14(7-8): 308-315

    17. [17]

      17 Nagashio K, Nishimura T, Kita K, Toriumi A. Appl. Phys. Express, 2009, 2(2): 025003

    18. [18]

      18 Shao Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y. Electroanalysis, 2010, 22(10): 1027-1036

    19. [19]

      19 Geim A K, Novoselov K S. Nat. Mater, 2007, 6(3): 183-191

    20. [20]

      20 Ohno Y, Maehashi K, Matsumoto K. J. Am. Chem. Soc., 2010, 132(51): 18012-18013

    21. [21]

      21 Mohanty N, Berry V. Nano Lett., 2008, 8(12): 4469-4476

    22. [22]

      22 Dong X, Huang W, Chen P. Nanoscale Res. Lett., 2011, 6(1): 60

    23. [23]

      23 Dong X, Shi Y, Huang W, Chen P, Li L J. Adv. Mater., 2010, 22(14): 1649-1653

    24. [24]

      24 Mao S, Lu G, Yu K, Bo Z, Chen J. Adv. Mater., 2010, 22(32): 3521-3526

    25. [25]

      25 Lu G, Ocola L E, Chen J. Appl. Phys. Lett., 2009, 94(8): 083111-083113

    26. [26]

      26 Lu G, Ocola L E, Chen J. Nanotechnology, 2009, 20(44): 445502

    27. [27]

      27 Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Nano Lett., 2008, 9(1): 30-35

    28. [28]

      28 Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009, 324(5932): 1312-1314

    29. [29]

      29 Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus M, Schaefer J, Kong J. Nano Res., 2009, 2(6): 509-516

    30. [30]

      30 Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Chem. Commun., 2009, 457(7230): 706-710

    31. [31]

      31 Reina A, Son H, Jiao L, Fan B, Dresselhaus M S, Liu Z, Kong J. J. Phys. Chem. C, 2008, 112(46): 17741-17744

    32. [32]

      32 Kim S N, Rusling J F, Papadimitrakopoulos F. Adv. Mater., 2007, 19(20): 3214-3228

    33. [33]

      33 Huang J, Liu Y, You T. Anal. Methods, 2010, 2(3): 202-211

    34. [34]

      34 Huang Y, Dong X, Shi Y, Li C M, Li L J, Chen P. Nanoscale, 2010, 2(8): 1485-1488

    35. [35]

      35 Sun Y, Buck H, Mallouk T E. Anal. Chem., 2001, 73(7): 1599-1604

    36. [36]

      36 Shi W, Ma Z. Biosens. Bioelectron., 2010, 26(3): 1098-1103

    37. [37]

      37 Haun J B, Yoon T J, Lee H, Weissleder R. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2(3): 291-304

    38. [38]

      38 Yun Y, Dong Z, Shanov V, Heineman W R, Halsall H B, Bhattacharya A, Conforti L, Narayan R K, Ball W S, Schulz M J. Nano Today, 2007, 2(6): 30-37

    39. [39]

      39 Pumera M. The Chem. Rec., 2009, 9(4): 211-223

    40. [40]

      40 Pumera M. Chem. Soc. Rev., 2010, 39(11): 4146-4157

    41. [41]

      41 Pumera M, Ambrosi A, Bonanni A, Chng E L K, Poh H L. TrAC Trends in Anal. Chem., 2010, 29(9): 954-965

    42. [42]

      42 Allen M J, Tung V C, Kaner R B. Chem. Rev., 2009, 110(1): 132-145

    43. [43]

      43 Brownson D A C, Banks C E. Analyst, 2010, 135(11): 2768-2778

    44. [44]

      44 Lin W J, Liao C S, Jhang J H, Tsai Y C. Electrochem. Commun., 2009, 11(11): 2153-2156

    45. [45]

      45 Tang L, Wang Y, Li Y, Feng H, Lu J, Li J. Adv. Funct. Mater., 2009, 19(17): 2782-2789

    46. [46]

      46 Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Chem. Commun., 2010, 467(7312): 190-193

    47. [47]

      47 Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi S S, Marchetto H. Adv. Funct. Mater., 2008, 18(21): 3506-3514

    48. [48]

      48 Lim C X, Hoh H Y, Ang P K, Loh K P. Anal. Chem., 2010, 82(17): 7387-7393

    49. [49]

      49 Zhou M, Zhai Y, Dong S. Anal. Chem., 2009, 81(14): 5603-5613

    50. [50]

      50 Andreescu S, Luck L A. Anal. Biochem., 2008, 375(2): 282-290

    51. [51]

      51 Xiao Y, Patolsky F, Katz E, Hainfeld J F, Willner I. Science, 2003, 299(5614): 1877-1881

    52. [52]

      52 Su B, Tang J, Yang H, Chen G, Huang J, Tang D. Electroanalysis, 2011, 23(4): 832-841

    53. [53]

      53 Zhu C, Guo S, Zhai Y, Dong S. Langmuir, 2010, 26(10): 7614-7618

    54. [54]

      54 Dey R S, Raj C R. J. Phys. Chem. C, 2010, 114(49): 21427-21433

    55. [55]

      55 Hong T K, Lee D W, Choi H J, Shin H S, Kim B S. ACS Nano, 2010, 4(7): 3861-3868

    56. [56]

      56 Jafri R I, Arockiados T, Rajalakshmi N, Ramaprabhu S. J. The Electrochem. Soc., 2010, 157(6): B874-B879

    57. [57]

      57 Wang K, Liu Q, Guan Q M, Wu J, Li H N, Yan J J. Biosens. Bioelectron., 2011, 26(5): 2252-2257

    58. [58]

      58 Wan Y, Wang Y, Wu J, Zhang D. Anal. Chem., 2010, 83(3): 648-653

    59. [59]

      59 Bo Y, Yang H, Hu Y, Yao T, Huang S. Electrochim. Acta, 2011, 56(6): 2676-2681

    60. [60]

      60 Wang Y, Li Y, Tang L, Lu J, Li J. Electrochem. Commun., 2009, 11(4): 889-892

    61. [61]

      61 Xu H, Dai H, Chen G. Talanta, 2010, 81(1-2): 334-338

    62. [62]

      62 Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25(5): 1070-1074

    63. [63]

      63 Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay I A, Lin Y. Talanta, 2009, 80(1): 403-406

    64. [64]

      64 Wu Z S, Ren W, Gao L, Liu B, Jiang C, Cheng H M. Carbon, 2009, 47(2): 493-499

    65. [65]

      65 Zhong Z, Wu W, Wang D, Wang D, Shan J, Qing Y, Zhang Z. Biosens. Bioelectron., 2010, 25(10): 2379-2383

    66. [66]

      66 Feng L, Chen Y, Ren J, Qu X. Biomaterials, 2011, 32(11): 2930-2937

    67. [67]

      67 Shan C, Yang H, Song J, Han D, Ivaska A, Niu L. Anal. Chem., 2009, 81(6): 2378-2382

    68. [68]

      68 Hou S, Kasner ML, Su S, Patel K, Cuellari R. J. Phys. Chem. C, 2010, 114(35): 14915-14921

    69. [69]

      69 Li F, Chai J, Yang H, Han D, Niu L. Talanta, 2010, 81(3): 1063-1068

    70. [70]

      70 Huang Y, Chen Y S. Sci. China Ser. B: Chem., 2009, 39(9): 887-896

    71. [71]

      71 Arsat R, Breedon M, Shafiei M, Spizziri P G, Gilje S, Kaner R B, Kalantar-zadeh K, Wlodarski W. Chem. Phys. Lett., 2009, 467(4-6): 344-347

    72. [72]

      72 Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S. Chem. Commun., 2007, 446(7131): 60-63

    73. [73]

      73 Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H. Phys. Rev. Lett., 2008, 100(20): 206803

    74. [74]

      74 Son Y W, Cohen M L, Louie S G. Chem. Commun., 2006, 444(7117): 347-349

    75. [75]

      75 Avouris P, Chen Z, Perebeinos V. Nat. Nano., 2007, 2(10): 605-615

    76. [76]

      76 Song B, Li D, Qi W, Elstner M, Fan C, Fang H. ChemPhysChem., 2010, 11(3): 585-589

    77. [77]

      77 Lu C H, Yang H H, Zhu C L, Chen X, Chen G N. Angew. Chem. Int. Edit., 2009, 48(26): 4785-4787

    78. [78]

      78 Liu C, Wang Z, Jia H, Li Z. Chem. Commun., 2011, 47(16): 4661-4663

    79. [79]

      79 He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C. Adv. Funct. Mater., 2010, 20(3): 453-459

    80. [80]

      80 Zhang M, Yin B C, Tan W, Ye B C. Biosens. Bioelectron., 2011, 26(7): 3260-3265

    81. [81]

      81 Lu C H, Li J, Liu J J, Yang H H, Chen X, Chen G N. Chemistry-A European Journal, 2010, 16(16): 4889-4894

    82. [82]

      82 Liu M, Zhang Q, Zhao H, Chen S, Yu H, Zhang Y, Quan X. Chem. Commun., 2011, 47(14): 4084-4086

    83. [83]

      83 Tang Z, Wu H, Cort J R, Buchko G W, Zhang Y, Shao Y, Aksay I A, Liu J, Lin Y. Small, 2010, 6(11): 1205-1209

    84. [84]

      84 Guo Y, Jia X, Zhang S. Chem. Commun., 2011, 47(2): 725-727

    85. [85]

      85 Fan F R, Park S, Zhu Y, Ruoff R S, Bard A J. J. Am. Chem. Soc., 2008, 131(3): 937-939

    86. [86]

      86 Wang Y, Lu J, Tang L, Chang H, Li J. Anal. Chem., 2009, 81(23): 9710-9715

    87. [87]

      87 Wang K, Liu Q, Wu X Y, Guan Q M, Li H N. Talanta, 2010, 82(1): 372-376

    88. [88]

      88 Li H, Chen J, Han S, Niu W, Liu X, Xu G. Talanta, 2009, 79(2): 165-170

    89. [89]

      89 Chen X, Ye H, Wang W, Qiu B, Lin Z, Chen G. Electroanalysis, 2010, 22(20): 2347-2352

    90. [90]

      90 Chen G, Zhai S, Zhai Y, Zhang K, Yue Q, Wang L, Zhao J, Wang H, Liu J, Jia J. Biosens. Bioelectron., 2011, 26(7): 3136-3141

    91. [91]

      91 Gan N, Hou J, Hu F, Cao Y, Li T, Zheng L, Wang J. Int. J. Electrochem. Sci., 2011, 6(11): 5146-5160

    92. [92]

      92 Li L L, Liu K P, Yang G H, Wang C M, Zhang J R, Zhu J J. Adv. Funct. Mater., 2011, 21(5): 869-878

    93. [93]

      93 Kim Y T, Han J H, Hong B H, Kwon Y U. Adv. Mater., 2010, 22(4): 515-518

    94. [94]

      94 Wang T, Zhang S, Mao C, Song J, Niu H, Jin B, Tian Y. Biosens. Bioelectron., 2012, 31(1): 369-375

    95. [95]

      95 Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Chang Y, Wang S, Gong Q, Liu Y. Adv. Mater., 2010, 22(1): 103-106

    96. [96]

      96 Geng X, Niu L, Xing Z, Song R, Liu G, Sun M, Cheng G, Zhong H, Liu Z, Zhang Z, Sun L, Xu H, Lu L, Liu L. Adv. Mater., 2010, 22(5): 638-642

    97. [97]

      97 Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S. Chemistry-A European Journal, 2009, 15(25): 6116-6120

    98. [98]

      98 Deng S, Lei J, Cheng L, Zhang Y, Ju H. Biosens. Bioelectron., 2011, 26(11): 4552-4558

    99. [99]

      99 Yuan Y, Li H, Han S, Hu L, Parveen S, Cai H, Xu G. Anal. Chem. Acta, 2012, 720: 38-42

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    3. [3]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    8. [8]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    9. [9]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    12. [12]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    13. [13]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    14. [14]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    15. [15]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    16. [16]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    17. [17]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    18. [18]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    19. [19]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    20. [20]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

Metrics
  • PDF Downloads(0)
  • Abstract views(668)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return