Citation:
CHEN Yu, WANG Jie, LIU Zhong-Ming. Graphene and Its Derivatives-Based Biosensing System[J]. Chinese Journal of Analytical Chemistry,
;2012, 40(11): 1772-1779.
doi:
10.3724/SP.J.1096.2012.20436
-
Graphene and its derivatives have recently attracted considerable attention because of their vast array of distinct electronic, thermal, mechanical, optical, and electrochemical properties. Thus, this set of compounds has become a research hotspot and a promising area for scientific research. The significantly high carrier mobility, high electrical conductivity, high surface area, ease of functionalization, strong fluorescence quenching, and affinity for biomolecules make graphene and its derivatives suitable in the development of biosensing systems. In our review, we describe the recent applications of graphene and its derivatives to field-effect transistors as well as to electrochemical, piezoelectric, photoluminescence, and electrochemiluminescence biosensing systems.
-
-
-
[1]
1 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666-669
-
[2]
2 Geim A K. Science, 2009, 324(5934): 1530-1534
-
[3]
3 Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22(35): 3906-3924
-
[4]
4 Su B, Tang D, Li Q, Tang J, Chen G. Anal. Chim. Acta, 2011, 692(1-2): 116-124
-
[5]
5 Lu L M, Li H B, Qu F, Zhang X B, Shen G L, Yu R Q. Biosens. Bioelectron., 2011, 26(8): 3500-3504
-
[6]
6 Liu Q, Shi J, Cheng M, Li G, Cao D, Jiang G. Chem. Commun., 2012, 48(13): 1874-1876
-
[7]
7 Liu F, Choi J Y, Seo T S. Biosens. Bioelectron., 2010, 25(10): 2361-2365
-
[8]
8 Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Chem. Commun., 2006, 442(7100): 282-286
-
[9]
9 Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Science, 2007, 315(5817): 1379
-
[10]
10 Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Chem. Commun., 2005, 438(7065): 197-200
-
[11]
11 Jung J H, Cheon D S, Liu F, Lee K B, Seo T S. Angew. Chem. Int. Edit., 2010, 49(33): 5708-5711
-
[12]
12 Loh K P, Bao Q, Eda G, Chhowalla M. Nat. Chem., 2010, 2(12): 1015-1024
-
[13]
13 Robinson J T, Perkins F K, Snow E S, Wei Z, Sheehan P E. Nano Lett., 2008, 8(10): 3137-3140
-
[14]
14 Shi Y, Huang W T, Luo H Q, Li N B. Chem. Commun., 2011, 47(16): 4676-4678
-
[15]
15 Ohno Y, Maehashi K, Matsumoto K. Biosens. Bioelectron., 2010, 26(4): 1727-1730
-
[16]
16 Pumera M. Mater. Today, 2011, 14(7-8): 308-315
-
[17]
17 Nagashio K, Nishimura T, Kita K, Toriumi A. Appl. Phys. Express, 2009, 2(2): 025003
-
[18]
18 Shao Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y. Electroanalysis, 2010, 22(10): 1027-1036
-
[19]
19 Geim A K, Novoselov K S. Nat. Mater, 2007, 6(3): 183-191
-
[20]
20 Ohno Y, Maehashi K, Matsumoto K. J. Am. Chem. Soc., 2010, 132(51): 18012-18013
-
[21]
21 Mohanty N, Berry V. Nano Lett., 2008, 8(12): 4469-4476
-
[22]
22 Dong X, Huang W, Chen P. Nanoscale Res. Lett., 2011, 6(1): 60
-
[23]
23 Dong X, Shi Y, Huang W, Chen P, Li L J. Adv. Mater., 2010, 22(14): 1649-1653
-
[24]
24 Mao S, Lu G, Yu K, Bo Z, Chen J. Adv. Mater., 2010, 22(32): 3521-3526
-
[25]
25 Lu G, Ocola L E, Chen J. Appl. Phys. Lett., 2009, 94(8): 083111-083113
-
[26]
26 Lu G, Ocola L E, Chen J. Nanotechnology, 2009, 20(44): 445502
-
[27]
27 Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Nano Lett., 2008, 9(1): 30-35
-
[28]
28 Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009, 324(5932): 1312-1314
-
[29]
29 Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus M, Schaefer J, Kong J. Nano Res., 2009, 2(6): 509-516
-
[30]
30 Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Chem. Commun., 2009, 457(7230): 706-710
-
[31]
31 Reina A, Son H, Jiao L, Fan B, Dresselhaus M S, Liu Z, Kong J. J. Phys. Chem. C, 2008, 112(46): 17741-17744
-
[32]
32 Kim S N, Rusling J F, Papadimitrakopoulos F. Adv. Mater., 2007, 19(20): 3214-3228
-
[33]
33 Huang J, Liu Y, You T. Anal. Methods, 2010, 2(3): 202-211
-
[34]
34 Huang Y, Dong X, Shi Y, Li C M, Li L J, Chen P. Nanoscale, 2010, 2(8): 1485-1488
-
[35]
35 Sun Y, Buck H, Mallouk T E. Anal. Chem., 2001, 73(7): 1599-1604
-
[36]
36 Shi W, Ma Z. Biosens. Bioelectron., 2010, 26(3): 1098-1103
-
[37]
37 Haun J B, Yoon T J, Lee H, Weissleder R. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2(3): 291-304
-
[38]
38 Yun Y, Dong Z, Shanov V, Heineman W R, Halsall H B, Bhattacharya A, Conforti L, Narayan R K, Ball W S, Schulz M J. Nano Today, 2007, 2(6): 30-37
-
[39]
39 Pumera M. The Chem. Rec., 2009, 9(4): 211-223
-
[40]
40 Pumera M. Chem. Soc. Rev., 2010, 39(11): 4146-4157
-
[41]
41 Pumera M, Ambrosi A, Bonanni A, Chng E L K, Poh H L. TrAC Trends in Anal. Chem., 2010, 29(9): 954-965
-
[42]
42 Allen M J, Tung V C, Kaner R B. Chem. Rev., 2009, 110(1): 132-145
-
[43]
43 Brownson D A C, Banks C E. Analyst, 2010, 135(11): 2768-2778
-
[44]
44 Lin W J, Liao C S, Jhang J H, Tsai Y C. Electrochem. Commun., 2009, 11(11): 2153-2156
-
[45]
45 Tang L, Wang Y, Li Y, Feng H, Lu J, Li J. Adv. Funct. Mater., 2009, 19(17): 2782-2789
-
[46]
46 Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Chem. Commun., 2010, 467(7312): 190-193
-
[47]
47 Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi S S, Marchetto H. Adv. Funct. Mater., 2008, 18(21): 3506-3514
-
[48]
48 Lim C X, Hoh H Y, Ang P K, Loh K P. Anal. Chem., 2010, 82(17): 7387-7393
-
[49]
49 Zhou M, Zhai Y, Dong S. Anal. Chem., 2009, 81(14): 5603-5613
-
[50]
50 Andreescu S, Luck L A. Anal. Biochem., 2008, 375(2): 282-290
-
[51]
51 Xiao Y, Patolsky F, Katz E, Hainfeld J F, Willner I. Science, 2003, 299(5614): 1877-1881
-
[52]
52 Su B, Tang J, Yang H, Chen G, Huang J, Tang D. Electroanalysis, 2011, 23(4): 832-841
-
[53]
53 Zhu C, Guo S, Zhai Y, Dong S. Langmuir, 2010, 26(10): 7614-7618
-
[54]
54 Dey R S, Raj C R. J. Phys. Chem. C, 2010, 114(49): 21427-21433
-
[55]
55 Hong T K, Lee D W, Choi H J, Shin H S, Kim B S. ACS Nano, 2010, 4(7): 3861-3868
-
[56]
56 Jafri R I, Arockiados T, Rajalakshmi N, Ramaprabhu S. J. The Electrochem. Soc., 2010, 157(6): B874-B879
-
[57]
57 Wang K, Liu Q, Guan Q M, Wu J, Li H N, Yan J J. Biosens. Bioelectron., 2011, 26(5): 2252-2257
-
[58]
58 Wan Y, Wang Y, Wu J, Zhang D. Anal. Chem., 2010, 83(3): 648-653
-
[59]
59 Bo Y, Yang H, Hu Y, Yao T, Huang S. Electrochim. Acta, 2011, 56(6): 2676-2681
-
[60]
60 Wang Y, Li Y, Tang L, Lu J, Li J. Electrochem. Commun., 2009, 11(4): 889-892
-
[61]
61 Xu H, Dai H, Chen G. Talanta, 2010, 81(1-2): 334-338
-
[62]
62 Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25(5): 1070-1074
-
[63]
63 Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay I A, Lin Y. Talanta, 2009, 80(1): 403-406
-
[64]
64 Wu Z S, Ren W, Gao L, Liu B, Jiang C, Cheng H M. Carbon, 2009, 47(2): 493-499
-
[65]
65 Zhong Z, Wu W, Wang D, Wang D, Shan J, Qing Y, Zhang Z. Biosens. Bioelectron., 2010, 25(10): 2379-2383
-
[66]
66 Feng L, Chen Y, Ren J, Qu X. Biomaterials, 2011, 32(11): 2930-2937
-
[67]
67 Shan C, Yang H, Song J, Han D, Ivaska A, Niu L. Anal. Chem., 2009, 81(6): 2378-2382
-
[68]
68 Hou S, Kasner ML, Su S, Patel K, Cuellari R. J. Phys. Chem. C, 2010, 114(35): 14915-14921
-
[69]
69 Li F, Chai J, Yang H, Han D, Niu L. Talanta, 2010, 81(3): 1063-1068
-
[70]
70 Huang Y, Chen Y S. Sci. China Ser. B: Chem., 2009, 39(9): 887-896
-
[71]
71 Arsat R, Breedon M, Shafiei M, Spizziri P G, Gilje S, Kaner R B, Kalantar-zadeh K, Wlodarski W. Chem. Phys. Lett., 2009, 467(4-6): 344-347
-
[72]
72 Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S. Chem. Commun., 2007, 446(7131): 60-63
-
[73]
73 Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H. Phys. Rev. Lett., 2008, 100(20): 206803
-
[74]
74 Son Y W, Cohen M L, Louie S G. Chem. Commun., 2006, 444(7117): 347-349
-
[75]
75 Avouris P, Chen Z, Perebeinos V. Nat. Nano., 2007, 2(10): 605-615
-
[76]
76 Song B, Li D, Qi W, Elstner M, Fan C, Fang H. ChemPhysChem., 2010, 11(3): 585-589
-
[77]
77 Lu C H, Yang H H, Zhu C L, Chen X, Chen G N. Angew. Chem. Int. Edit., 2009, 48(26): 4785-4787
-
[78]
78 Liu C, Wang Z, Jia H, Li Z. Chem. Commun., 2011, 47(16): 4661-4663
-
[79]
79 He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C. Adv. Funct. Mater., 2010, 20(3): 453-459
-
[80]
80 Zhang M, Yin B C, Tan W, Ye B C. Biosens. Bioelectron., 2011, 26(7): 3260-3265
-
[81]
81 Lu C H, Li J, Liu J J, Yang H H, Chen X, Chen G N. Chemistry-A European Journal, 2010, 16(16): 4889-4894
-
[82]
82 Liu M, Zhang Q, Zhao H, Chen S, Yu H, Zhang Y, Quan X. Chem. Commun., 2011, 47(14): 4084-4086
-
[83]
83 Tang Z, Wu H, Cort J R, Buchko G W, Zhang Y, Shao Y, Aksay I A, Liu J, Lin Y. Small, 2010, 6(11): 1205-1209
-
[84]
84 Guo Y, Jia X, Zhang S. Chem. Commun., 2011, 47(2): 725-727
-
[85]
85 Fan F R, Park S, Zhu Y, Ruoff R S, Bard A J. J. Am. Chem. Soc., 2008, 131(3): 937-939
-
[86]
86 Wang Y, Lu J, Tang L, Chang H, Li J. Anal. Chem., 2009, 81(23): 9710-9715
-
[87]
87 Wang K, Liu Q, Wu X Y, Guan Q M, Li H N. Talanta, 2010, 82(1): 372-376
-
[88]
88 Li H, Chen J, Han S, Niu W, Liu X, Xu G. Talanta, 2009, 79(2): 165-170
-
[89]
89 Chen X, Ye H, Wang W, Qiu B, Lin Z, Chen G. Electroanalysis, 2010, 22(20): 2347-2352
-
[90]
90 Chen G, Zhai S, Zhai Y, Zhang K, Yue Q, Wang L, Zhao J, Wang H, Liu J, Jia J. Biosens. Bioelectron., 2011, 26(7): 3136-3141
-
[91]
91 Gan N, Hou J, Hu F, Cao Y, Li T, Zheng L, Wang J. Int. J. Electrochem. Sci., 2011, 6(11): 5146-5160
-
[92]
92 Li L L, Liu K P, Yang G H, Wang C M, Zhang J R, Zhu J J. Adv. Funct. Mater., 2011, 21(5): 869-878
-
[93]
93 Kim Y T, Han J H, Hong B H, Kwon Y U. Adv. Mater., 2010, 22(4): 515-518
-
[94]
94 Wang T, Zhang S, Mao C, Song J, Niu H, Jin B, Tian Y. Biosens. Bioelectron., 2012, 31(1): 369-375
-
[95]
95 Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Chang Y, Wang S, Gong Q, Liu Y. Adv. Mater., 2010, 22(1): 103-106
-
[96]
96 Geng X, Niu L, Xing Z, Song R, Liu G, Sun M, Cheng G, Zhong H, Liu Z, Zhang Z, Sun L, Xu H, Lu L, Liu L. Adv. Mater., 2010, 22(5): 638-642
-
[97]
97 Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S. Chemistry-A European Journal, 2009, 15(25): 6116-6120
-
[98]
98 Deng S, Lei J, Cheng L, Zhang Y, Ju H. Biosens. Bioelectron., 2011, 26(11): 4552-4558
-
[99]
99 Yuan Y, Li H, Han S, Hu L, Parveen S, Cai H, Xu G. Anal. Chem. Acta, 2012, 720: 38-42
-
[1]
-
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[3]
Yuanchun Pan , Xinyun Lin , Leyi Yang , Wenya Hu , Dekui Song , Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[6]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[7]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[8]
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
-
[9]
Hailang JIA , Yujie LU , Pengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021
-
[10]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[11]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[12]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[13]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[14]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[15]
Yongjian Zhang , Fangling Gao , Hong Yan , Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035
-
[16]
Tinghui AN , Dong XIANG , Jiaqi LI , Jiawei WANG , Shuming YU , Nan WANG , Kedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412
-
[17]
Feng Lin , Zhongxin Jin , Caiying Li , Cheng Shao , Yang Xu , Fangze Li , Siqi Liu , Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017
-
[18]
Shuhui Li , Rongxiuyuan Huang , Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028
-
[19]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[20]
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(668)
- HTML views(48)
Login In
DownLoad: