Citation: JIA Chen-Zhong, WANG Yan-Xing, ZHANG Cai-Xiang. Variation Characteristics of 3D-Excition Emission Matrix Fluorescence Spectra of Dissolved Organic Matter from Landfill Leachate during Photocatalytic Degradation[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(11): 1740-1746. doi: 10.3724/SP.J.1096.2012.20409 shu

Variation Characteristics of 3D-Excition Emission Matrix Fluorescence Spectra of Dissolved Organic Matter from Landfill Leachate during Photocatalytic Degradation

  • Corresponding author: JIA Chen-Zhong, 
  • Received Date: 18 April 2012
    Available Online: 23 June 2012

    Fund Project: 本文系国家自然科学基金项目(No. 40972156) (No. 40972156)中国地质大学(武汉)生物地质与环境地质教育部重点实验室开放项目(No. BGEGF200820) (武汉)生物地质与环境地质教育部重点实验室开放项目(No. BGEGF200820)

  • Three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEMs) was applied to analyze the variation characteristics of dissolved organic matter (DOM) six fractions in landfill leachate during photocatalytic degradation. The results showed that fluorescence spectroscopy of hydrophobic acids (HOA), hydrophobic bases (HOB), hydrophobic neutral traction (HIB), hydrophobic neutral fraction (HON) and hydrophilic neutral fraction (HIN) changed considerably, and that of HIA was relatively steady during photocatalytic process. In general, fluorescence peaks of humic acids-like had the most significant change during photocatalytic treatment process, and disappeared entirely after 60 h treatment, which implied that humic acids-like can be degraded preferentially. In 72 h effluent, VIS fulvic-like, tryptophan-like and tyrosine-like were residual in the fluorescence regions, and the last two were predominant fractions. These results indicated that macromolecular fulvic-like and humic acids-like can be degraded into micro-molecular protein-like matters.
  • 加载中
    1. [1]

      1 Huo S L, Xi B D, Yu H C, He L S, Fan S L, Liu H G. J. Environ. Sci., 2008, 20(4): 492-498

    2. [2]

      2 Liu T, Chen Z L, Yu W Z, You S J. Water Res, 2011, 45(5), 2111-2121

    3. [3]

      3 WU Jin, CUI Shuo, SU Wei, CAO Zhi-Ping. Spectroscopy and Spectral Analysis, 2011, 31(6): 1562-1566

    4. [4]

      吴 静, 崔 硕, 苏 伟, 曹知平. 光谱学与光谱分析, 2011, 31(6): 1562-1566

    5. [5]

      4 Lu F, Chang C H, Lee D J, He P J, Shao L M, Su A. Chemosphere, 2009, 74(4): 575-582

    6. [6]

      5 LV Gui-Cai, ZHAO Wei-Hong, WANG Jiang-Tao. Chinese J. Anal. Chem., 2010, 38(8): 1144-1150

    7. [7]

      吕桂才, 赵卫红, 王江涛. 分析化学, 2010, 38(8): 1144-1150

    8. [8]

      6 ZHANG Jun-Zheng, YANG Qian, XI Bei-Dou, WEI Zi-Min, HE Xiao-Song, LI Ming-Xiao, YANG Tian-Xue. Spectroscopy and Spectral Analysis, 2008, 28(11): 2583-2587

    9. [9]

      张军政, 杨 谦, 席北斗, 魏自民, 何小松, 李鸣晓, 杨天学. 光谱学与光谱分析, 2008, 28(11): 2583-2587

    10. [10]

      7 HE Xiao-Song, XI Bei-Dou, WEI Zi-Min, LI Ming-Xiao, GENG Chun-Mao, YU Hong, LIU Hong-Liang. Chinese J. Anal. Chem., 2010, 38(10): 1417-1422

    11. [11]

      何小松, 席北斗, 魏自民, 李鸣晓, 耿春茂, 余 红, 刘鸿亮. 分析化学, 2010, 38(10): 1417-1422

    12. [12]

      8 Lee J M, Kim M S, Kim B W. Water Res, 2004, 38(16): 3605-3613

    13. [13]

      9 de Morais J L, Zamora P P. J. Hazard Mater, 2005, 123(1-3): 181-186

    14. [14]

      10 Lou Z Y, Zhao Y C, Yuan T, Song Y, Chen H L, Zhu N W, Huan R H. Sci. Total Environ., 2009, 407(10): 3385-3391

    15. [15]

      11 WEI Qiong-Shan, WANG Dong-Sheng, YU Jian-Feng, LIU Hai-long, HAN Hong-Da, HE Wen-Jie. Techniques and Equipment for Environmental Pollution Control, 2006, 7(10): 17-21, 82

    16. [16]

      魏群山, 王东升, 余剑锋, 刘海龙, 韩宏大, 何文杰. 环境污染治理技术与设备, 2006, 7(10): 17-21, 82

    17. [17]

      12 Jia C Z, Wang Y X, Zhang C X, Qin Q Y. Water, Air, & Soil Pollution, 2010, 217(1): 375-385

    18. [18]

      13 Liu Z P, Guo J S, Fang F. Advanced Materials Research, 2011, 233(5): 667-672

    19. [19]

      14 Tauchert E, Schneider S, de Morais J L, Peralta-Zamora P. Chemosphere, 2006, 64(9): 1458-1463

    20. [20]

      15 Hudson N, Baker A, Reynolds D. River Research and Applications, 2007, 23(6): 631-649

    21. [21]

      16 Uyguner CS, Bekbolet M. Catal Today, 2005, 101(3-4): 267-274

    22. [22]

      17 Her N, Amy G, Chung J, Yoon J, Yoon Y. Chemosphere, 2008, 70(3): 495-502

    23. [23]

      18 Swietlik J, Sikorska E. Water Res., 2004, 38(17): 3791-3799

    24. [24]

      19 Coble P G. Mar Chem., 1996, 51(4): 325-346

  • 加载中
    1. [1]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    2. [2]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    3. [3]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    12. [12]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    13. [13]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    16. [16]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    18. [18]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

Metrics
  • PDF Downloads(0)
  • Abstract views(443)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return