Citation: JIA Chen-Zhong, WANG Yan-Xing, ZHANG Cai-Xiang. Variation Characteristics of 3D-Excition Emission Matrix Fluorescence Spectra of Dissolved Organic Matter from Landfill Leachate during Photocatalytic Degradation[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(11): 1740-1746. doi: 10.3724/SP.J.1096.2012.20409 shu

Variation Characteristics of 3D-Excition Emission Matrix Fluorescence Spectra of Dissolved Organic Matter from Landfill Leachate during Photocatalytic Degradation

  • Corresponding author: JIA Chen-Zhong, 
  • Received Date: 18 April 2012
    Available Online: 23 June 2012

    Fund Project: 本文系国家自然科学基金项目(No. 40972156) (No. 40972156)中国地质大学(武汉)生物地质与环境地质教育部重点实验室开放项目(No. BGEGF200820) (武汉)生物地质与环境地质教育部重点实验室开放项目(No. BGEGF200820)

  • Three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEMs) was applied to analyze the variation characteristics of dissolved organic matter (DOM) six fractions in landfill leachate during photocatalytic degradation. The results showed that fluorescence spectroscopy of hydrophobic acids (HOA), hydrophobic bases (HOB), hydrophobic neutral traction (HIB), hydrophobic neutral fraction (HON) and hydrophilic neutral fraction (HIN) changed considerably, and that of HIA was relatively steady during photocatalytic process. In general, fluorescence peaks of humic acids-like had the most significant change during photocatalytic treatment process, and disappeared entirely after 60 h treatment, which implied that humic acids-like can be degraded preferentially. In 72 h effluent, VIS fulvic-like, tryptophan-like and tyrosine-like were residual in the fluorescence regions, and the last two were predominant fractions. These results indicated that macromolecular fulvic-like and humic acids-like can be degraded into micro-molecular protein-like matters.
  • 加载中
    1. [1]

      1 Huo S L, Xi B D, Yu H C, He L S, Fan S L, Liu H G. J. Environ. Sci., 2008, 20(4): 492-498

    2. [2]

      2 Liu T, Chen Z L, Yu W Z, You S J. Water Res, 2011, 45(5), 2111-2121

    3. [3]

      3 WU Jin, CUI Shuo, SU Wei, CAO Zhi-Ping. Spectroscopy and Spectral Analysis, 2011, 31(6): 1562-1566

    4. [4]

      吴 静, 崔 硕, 苏 伟, 曹知平. 光谱学与光谱分析, 2011, 31(6): 1562-1566

    5. [5]

      4 Lu F, Chang C H, Lee D J, He P J, Shao L M, Su A. Chemosphere, 2009, 74(4): 575-582

    6. [6]

      5 LV Gui-Cai, ZHAO Wei-Hong, WANG Jiang-Tao. Chinese J. Anal. Chem., 2010, 38(8): 1144-1150

    7. [7]

      吕桂才, 赵卫红, 王江涛. 分析化学, 2010, 38(8): 1144-1150

    8. [8]

      6 ZHANG Jun-Zheng, YANG Qian, XI Bei-Dou, WEI Zi-Min, HE Xiao-Song, LI Ming-Xiao, YANG Tian-Xue. Spectroscopy and Spectral Analysis, 2008, 28(11): 2583-2587

    9. [9]

      张军政, 杨 谦, 席北斗, 魏自民, 何小松, 李鸣晓, 杨天学. 光谱学与光谱分析, 2008, 28(11): 2583-2587

    10. [10]

      7 HE Xiao-Song, XI Bei-Dou, WEI Zi-Min, LI Ming-Xiao, GENG Chun-Mao, YU Hong, LIU Hong-Liang. Chinese J. Anal. Chem., 2010, 38(10): 1417-1422

    11. [11]

      何小松, 席北斗, 魏自民, 李鸣晓, 耿春茂, 余 红, 刘鸿亮. 分析化学, 2010, 38(10): 1417-1422

    12. [12]

      8 Lee J M, Kim M S, Kim B W. Water Res, 2004, 38(16): 3605-3613

    13. [13]

      9 de Morais J L, Zamora P P. J. Hazard Mater, 2005, 123(1-3): 181-186

    14. [14]

      10 Lou Z Y, Zhao Y C, Yuan T, Song Y, Chen H L, Zhu N W, Huan R H. Sci. Total Environ., 2009, 407(10): 3385-3391

    15. [15]

      11 WEI Qiong-Shan, WANG Dong-Sheng, YU Jian-Feng, LIU Hai-long, HAN Hong-Da, HE Wen-Jie. Techniques and Equipment for Environmental Pollution Control, 2006, 7(10): 17-21, 82

    16. [16]

      魏群山, 王东升, 余剑锋, 刘海龙, 韩宏大, 何文杰. 环境污染治理技术与设备, 2006, 7(10): 17-21, 82

    17. [17]

      12 Jia C Z, Wang Y X, Zhang C X, Qin Q Y. Water, Air, & Soil Pollution, 2010, 217(1): 375-385

    18. [18]

      13 Liu Z P, Guo J S, Fang F. Advanced Materials Research, 2011, 233(5): 667-672

    19. [19]

      14 Tauchert E, Schneider S, de Morais J L, Peralta-Zamora P. Chemosphere, 2006, 64(9): 1458-1463

    20. [20]

      15 Hudson N, Baker A, Reynolds D. River Research and Applications, 2007, 23(6): 631-649

    21. [21]

      16 Uyguner CS, Bekbolet M. Catal Today, 2005, 101(3-4): 267-274

    22. [22]

      17 Her N, Amy G, Chung J, Yoon J, Yoon Y. Chemosphere, 2008, 70(3): 495-502

    23. [23]

      18 Swietlik J, Sikorska E. Water Res., 2004, 38(17): 3791-3799

    24. [24]

      19 Coble P G. Mar Chem., 1996, 51(4): 325-346

  • 加载中
    1. [1]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    2. [2]

      Yihong ShaoRongchen ShenSong WangShijie LiPeng ZhangXin Li . Composition engineering in covalent organic frameworks for tailored photocatalysis. Acta Physico-Chimica Sinica, 2025, 41(12): 100176-0. doi: 10.1016/j.actphy.2025.100176

    3. [3]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    4. [4]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    5. [5]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    6. [6]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    9. [9]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    10. [10]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    11. [11]

      Laiyang ZHUXuze PANXiaoying ZHANGXinyu XUShiheng LIFajin CAIYifan WANGQingxia YAOYi QIUJie SU . Synthesis of stable and porous bimetallic Ti-MOF for photocatalytic oxidation of aromatic sulfides to sulfoxides. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2115-2126. doi: 10.11862/CJIC.20250139

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    14. [14]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    15. [15]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    18. [18]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    19. [19]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    20. [20]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

Metrics
  • PDF Downloads(0)
  • Abstract views(683)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return