Citation: ZHOU Lang, LI Qiao-Jing, LI Yong-Sheng, GAO Xiu-Feng. Rapid Determination of Pyruvic Acid in Erythrocytes by Lysing-heating Fluorescence Capillary Method[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(11): 1725-1729. doi: 10.3724/SP.J.1096.2012.20271 shu

Rapid Determination of Pyruvic Acid in Erythrocytes by Lysing-heating Fluorescence Capillary Method

  • Corresponding author: LI Yong-Sheng, 
  • Received Date: 9 March 2012
    Available Online: 25 May 2012

  • In the conventional method of erythrocytes treatment, there was the efflux of pyruvic acid in erythrocytes (PAE) during washing and separation of erythrocytes/leukocytes using the physiological saline. This phenomenon caused the deviation of the measured value of PAE from its real concentration. This research designed a method comprising the steps of employing the erythrocyte lysis buffer to specifically lyse the red blood cells, separating leukocytes and platelets by centrifugation, removing the protein by heating the hemolysate, and detecting PAE using the pyruvate-enzyme fluorescence capillary analysis. The optimized procedures for the blood pretreatment were as follows: at the centrifugal speed of 16000 r/min, the blood sample was centrifuged for 1 min to obtain erythrocytes, after the erythrocytes were lysed by the lysis buffer, the hemolysate was heated for 5 min at 100℃. Through the contrast experiment, it was found that this method was superior to other erythrocyte treatment method. The pyruvate determination method in this research had a good linearity in the range of 10-120 mmol/L, a detection limit of 0.98 mmol/L, and a sensitivity of 5.64 F L/mmol, it was 60 times higher than that of references method. This method offered a relative standard deviation of PAE less than 2.8% (n=11), and a recovery range of 98.3%-104.1%.
  • 加载中
    1. [1]

      1 Lam T K T, Gutierrez-Juarez R, Pocai A, Rossetti L. Science, 2005, 309(5736): 943-947

    2. [2]

      2 Gajovic N, Binyamin G, Warsinke A, Scheller F W, Heller A. Anal. Chem., 2000, 72(13): 2963-2968

    3. [3]

      3 Horiguchi N, Horiguchi H. E. U. Patent, 1522852, 2003

    4. [4]

      4 Shepotinovskii V I, Barsukova O I, Mikarshinovskii Z I. S. U. Patent, 1770906, 1972

    5. [5]

      5 Darghouth D, Koehl B, Heilieret J F, Madalinski G, Bovee P, Bosman G, Delaunay J, Junot C, Roméo P H. Haematol.-Hematol. J., 2011, 96(12): 1861-1865

    6. [6]

      6 Markuszewski M J, Szczykowska M, Siluk D, Kaliszan R. J. Pharm. Biomed. Anal., 2005, 39 (3-4): 636-642

    7. [7]

      7 Ogasawara Y, Funakoshi M, Ishii K. Blood Cell Mol. Dis., 2008, 41(3): 237-243

    8. [8]

      8 LI Yong-Sheng, GAO Xiu-Feng. Spectrosc. Spect. Anal., 2007, 27(8): 1565-1569

    9. [9]

      李永生, 高秀峰. 光谱学与光谱分析, 2007, 27(8): 1565-1569

    10. [10]

      9 Li Y S, Gao X F. Anal. Chim. Acta, 2007, 588 (1): 140-146

    11. [11]

      10 GAO Xiu-Feng, LI Yong-Sheng, JIANG Yan-Xia. Chinese J. Anal. Chem., 2006, 34(9): 1220-1222

    12. [12]

      高秀峰, 李永生, 姜艳霞. 分析化学, 2006, 34(9): 1220-1222

    13. [13]

      11 Zhao Y Y, Gao X F, Li Y S, Ju X, Zhang J, Zheng J. Talanta, 2008, 76(2): 265-270

    14. [14]

      12 Li Y S, Du Y D, Chen T M, Gao X F. Biosens. Bioelectron., 2010, 25(6): 1382-1388

    15. [15]

      13 LI Yong-Sheng, YANG Wei, LI Qiao-Jing, ZHOU Lang, GAO Xiu-Feng. Chinese J. Anal. Chem., 2011, 39(7): 1058-1064

    16. [16]

      李永生, 杨 微, 李乔婧, 周 朗, 高秀峰. 分析化学, 2011, 39(7): 1058-1064

    17. [17]

      14 LI Yong-Sheng, GAO Xiu-Feng. China Patent, 1737538, 2012

    18. [18]

      李永生, 高秀峰. 中国专利, 1737538, 2012

    19. [19]

      15 Hawley T S, Hawley R G. Flow Cytometry Protocols. 2nd ed., New York: Humana Press, 2004: 164

    20. [20]

      16 Dubinsky W P, Racker E. J. Membr. Biol., 1978, 44(1): 25-36

    21. [21]

      17 ZHU Zhong-Yong. Practical Medical Laboratory Sciences. Beijing: People's Military Medical Press, 1992: 436-440

    22. [22]

      朱中庸. 实用医学检验学. 北京: 人民军医出版社, 1992, 436-440

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    3. [3]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    4. [4]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    5. [5]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    6. [6]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    7. [7]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    8. [8]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    9. [9]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    10. [10]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    11. [11]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    12. [12]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    13. [13]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    14. [14]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    15. [15]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    16. [16]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    17. [17]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    20. [20]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

Metrics
  • PDF Downloads(0)
  • Abstract views(403)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return