Citation: CCS Chemistry:高氮含量,孔径可控,多级自组装合成优越电容器性能N掺杂介孔碳材料
[J]. CCS Chemistry, ;2020, 2(2): 870-881. doi: 10.31635/ccschem.020.202000233
shu

CCS Chemistry:高氮含量,孔径可控,多级自组装合成优越电容器性能N掺杂介孔碳材料

Figures(1)

  •    吉林大学化学学院、无机合成与制备化学国家重点实验室乔振安课题组提出了一种多级自组装方法制备了具有高吡啶N掺杂介孔碳材料。得到的高吡啶N掺杂介孔碳材料,显示出了超高的面积归一化电容,远高于活性炭的理论电化学双电层电容。



       介孔碳材料具有可调节的孔径,大的比表面积以及出色热稳定性,在吸附、催化、能量转换和存储方面有非常广阔的应用前景,其中氮掺杂的介孔碳材料因性能尤为突出而备受关注,尤其是吡啶氮构型(N-6) 、吡啶酮/吡咯氮构型(N-5) 具有丰富的负电子缺陷位点,在改善材料性能中起着关键作用。近年来,氮掺杂的介孔碳材料合成方法不断被提出,例如自组装方法省时、易操作且环境友好,但氮掺杂量低、不稳定、吡啶和吡啶酮/吡咯构型的氮含量低等问题依然存在。



    图 1


       最近,吉林大学乔振安课题组报道了一种简便、多级自组装策略,合成一系列具有可调节孔径(8-25nm)的高吡啶N掺杂介孔碳材料GO @ NMC(图1)。该方法以含有吡啶氮构型的2,6-二氨基吡啶(PDAP)作为单体,PS-b-PEO(polystyrene-b-poly(ethylene oxide))形成的胶束作为模版,氧化石墨烯(GO)作为结构导向剂和富集胶束的平台。通过对嵌段共聚物PS-b-PEO中PS嵌段长度的调节,实现了介孔尺寸的精确可调。在700℃惰性气体中煅烧后,N掺杂的介孔碳材料仍然具有高达近19%的氮含量,其中来自N-6和N-5构型的氮含量更是高达49.9%和35.3%(图2)。



    图 2


       由于该材料本身的二维结构,高吡啶和吡咯构型的氮含量,以及可控的介孔,使其成为潜在的超级电容材料。作者通过实验进一步证实了此材料极好的电容特性和可逆性。材料的面积归一化电容达到90.6 μF cm-2,远高于活性炭的理论电化学双电层电容(theoretical electrochemical double-layer capacitance)的面积归一化电容(15-25 μF cm-2)和以往报道的常规碳材料的面积归一化电容(图3)。单位表面积如此出色的电容量归因于材料本身提供的高比例赝电容贡献,作者通过Trasatti 和 Dunn两种分析方法得出了高达约45%赝电容贡献。



    图 3


      综上所述,作者开发了一种简便的多级分子自组装体,用于合成新型的二维 N掺杂介孔碳材料GO @ NMC。由于其高的N含量、大的中孔尺寸以及二维结构,使GO @ NMC具有超高的表面积归一化电容和出色的循环稳定性。该工作以research article的形式发表在CCS Chemistry,并在CCS Chemistry官网“Just Published”栏目上线。

    文章详情:

    Multistage Self-Assembly Strategy: Designed Synthesis of N-doped Mesoporous Carbon with High and Controllable Pyridine N Content for Ultrahigh Surface-Area-Normalized Capacitance 

    Liangliang Zhang , Tao Wang , Tu-Nan Gao , Hailong Xiong , Rui Zhang , Zhilin Liu , Shuyan Song , Sheng Dai & Zhen-An Qiao *Citation:CCS Chem. 2020, 2, 870–881

    文章链接:https://doi.org/10.31635/ccschem.020.202000233

  • 加载中
  • 加载中
    1. [1]

      Lei YANGTing-Ting WUHong-Qiang LIBi-Yu JINXiao-Jun HE . Preparation of Nitrogen-Doped Carbon Nanonets for High-Performance Supercapacitors. Chinese Journal of Inorganic Chemistry, 2021, 37(6): 1017-1026. doi: 10.11862/CJIC.2021.118

    2. [2]

      Qunying LiangHong SuJing YanChunkit LeungShuiliang CaoDingsheng Yuan . N-doped mesoporous carbon as a bifunctional material for oxygen reduction reaction and supercapacitors. Chinese Journal of Catalysis, 2014, 35(7): 1078-1083. doi: 10.1016/S1872-2067(14)60044-9

    3. [3]

      Jie LEITao-Xiang WANGZhi LIHui CHENSong YANGHai-Bo HANKang LI . Synthesis of Multi-stage Pore Carbon Material with Large Spacing of Carbon Layers from Asphalt for Supercapacitors. Chinese Journal of Inorganic Chemistry, 2021, 37(7): 1218-1226. doi: 10.11862/CJIC.2021.126

    4. [4]

      WU Xiao-MinMAO JianZHOU Zhi-PengZHANG ChenBU Jing-TingLI Zhen . Building a High-Performance Supercapacitor with Nitrogen-Doped Graphene Quantum Dots/MOF-Derived Porous Carbon Nanosheets. Chinese Journal of Inorganic Chemistry, 2020, 36(7): 1298-1308. doi: 10.11862/CJIC.2020.139

    5. [5]

      XU Ling-LingZHANG Xiao-HuaCHEN Jin-Hua . Synthesis and Electrochemical Supercapacitive Properties of Nitrogen-Doped Mesoporous Carbons. Acta Physico-Chimica Sinica, 2014, 30(7): 1274-1280. doi: 10.3866/PKU.WHXB201405044

    6. [6]

      LI Li-XiangTAO JingGENG XinAN Bai-Gang . Preparation and Supercapacitor Performance of Nitrogen-Doped Carbon Nanotubes from Polyaniline Modification. Acta Physico-Chimica Sinica, 2013, 29(01): 111-116. doi: 10.3866/PKU.WHXB201211091

    7. [7]

      ZHANG JingKONG Ling-BinCAI Jian-JunYANG Zhen-ShengLUO Yong-ChunKANG Long . Novel Polypyrrole/Mesoporous Carbon Nanocomposite Electrode for an Electrochemical Hybrid Capacitor. Acta Physico-Chimica Sinica, 2010, 26(06): 1515-1520. doi: 10.3866/PKU.WHXB20100603

    8. [8]

      Zhuang Xin-GuoYang Yu-ShengJi You-JuYang Dong-PingTang Zhi-Yuan . The Influence of Porous Structure of Activated Carbons Used as Supercapacitor Electrode Materials on Its Properties. Acta Physico-Chimica Sinica, 2003, 19(08): 689-694. doi: 10.3866/PKU.WHXB20030803

    9. [9]

      LI LinREN HuiminWEI BohuiLI JunWANG JieLI HuiYAO Chenzhong . V-N Co-doped Mesoporous Carbon Nanomaterials as Catalysts for Artificial N2 Reduction. Chinese Journal of Applied Chemistry, 2020, 37(8): 930-938. doi: 10.11944/j.issn.1000-0518.2020.00.200037

    10. [10]

      XU HuanHU ZhongaiHU YingyingLU AilianLI LiYANG YuyingLI Zhimin . Solvothermal Synthesis and Performances of NiO/Reduced Graphene Oxide for Supercapacitor Electrode Material with Long Cycle Stability. Chinese Journal of Applied Chemistry, 2014, 31(3): 328-335. doi: 10.3724/SP.J.1095.2014.30181

    11. [11]

      Yangyang Yuan Hongchao Liu Miao YangShutao Xu . Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance. Chinese Journal of Catalysis, 2015, 36(11): 1910-1919. doi: 10.1016/S1872-2067(15)60960-3

    12. [12]

      LIU DongSHEN JunLI Ya-JieLIU Nian-PingLIU Bin . Pore Structures of Carbon Aerogels and Their Effects on Electrochemical Supercapacitor Performance. Acta Physico-Chimica Sinica, 2012, 28(04): 843-849. doi: 10.3866/PKU.WHXB201202172

    13. [13]

      MA ShiyaoDU HuiGENG ChuangWANG YangPANG LinhanZHAO NaLIU XiaoGUO YongtaiQU JiangyingIn situ Synthesis of Nitrogen/Oxygen Co-doped Porous Carbons Derived from Crab Shells and Their Application as Supercapacitor Electrode Materials. Chinese Journal of Applied Chemistry, 2016, 33(11): 1316-1321. doi: 10.11944/j.issn.1000-0518.2016.11.160047

    14. [14]

      YE ShaofengLIU WenxianSHA DongyongXU XilianSHI WenhuiCAO Xiehong . Two-Dimensional Materials Assembled Bubble Foam-like Hybrid for Supercapacitor Applications. Chinese Journal of Applied Chemistry, 2018, 35(3): 351-355. doi: 10.11944/j.issn.1000-0518.2018.03.170437

    15. [15]

      SUN ZheLIU Kai-YuZHANG Hai-FengLI Ao-ShengXU Xiao-Cun . Study on Meso-C/MnO2 Asymmetric Supercapacitors. Acta Physico-Chimica Sinica, 2009, 25(10): 1991-1997. doi: 10.3866/PKU.WHXB20091025

    16. [16]

      GAO Xiu-LiLI ShuoXING WeiYAN Zi-Feng . Quinone-Modified Mesoporous Carbon/Graphene Composite with Excellent Capacitive Performance. Chinese Journal of Inorganic Chemistry, 2018, 34(3): 507-514. doi: 10.11862/CJIC.2018.075

    17. [17]

      PAN Xu-ChenTANG JingXUE Hai-RongGUO HuFAN Xiao-LiZHU Ze-TaoHE Jian-Ping . Synthesis and Electrocatalytic Performance of N-Doped Ordered Mesoporous Carbon-Ni Nanocomposite. Chinese Journal of Inorganic Chemistry, 2015, (2): 282-290. doi: 10.11862/CJIC.2015.039

    18. [18]

      LIANG Xi-TongXUE Dong-FengIn Situ Electrochemical Synthesis of Fe-Based Electrode for Supercapacitors. Chinese Journal of Inorganic Chemistry, 2020, 36(7): 1393-1400. doi: 10.11862/CJIC.2020.138

    19. [19]

      PANG XuMA Zheng-QingZUO Lie . Sn Doped MnO2 Electrode Material for Supercapacitors. Acta Physico-Chimica Sinica, 2009, 25(12): 2433-2437. doi: 10.3866/PKU.WHXB20091211

Metrics
  • PDF Downloads(0)
  • Abstract views(3212)
  • HTML views(272)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return