Citation: Wen-li LU, Jun-gang WANG, De-kui SUN, Zhong-yi MA, Cong-biao CHEN, Bo HOU, Bao-jun WANG, De-bao LI. CO dissociation over cobalt-based catalysts with different crystal facets[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(5): 583-590. doi: 10.19906/j.cnki.JFCT.2021094 shu

CO dissociation over cobalt-based catalysts with different crystal facets

  • Corresponding author: Jun-gang WANG, wangjg@sxicc.ac.cn Bo HOU, houbo@sxicc.ac.cn
  • Received Date: 28 October 2021
    Revised Date: 19 November 2021
    Accepted Date: 24 November 2021
    Available Online: 9 June 2022

Figures(12)

  • The way of CO dissociation, as a crucial step in the Fischer-Tropsch (F-T) synthesis process, has been a subject of intense debate in literature. In order to understand the F-T synthesis reaction behavior of cobalt catalysts with different crystal planes, the CO dissociation behavior over three cobalt catalysts with different crystal facets during F-T reaction was investigated by excluding the influence of support, promoter and particle size. The catalysts were characterized by temperature programmed desorption (TPD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), in-situ Raman and Chemical Transient Kinetics (CTK). The results show that CO on the Co(10-11) is activated by direct dissociation, among which small amount of carbonaceous species generated by CO dissociation forms carbon depositing on the catalyst surface under F-T reaction condition, and a large amount of carbonaceous species are hydrogenated to CHx species. The CO on the Co(0001) crystal surface is activated predominantly by hydrogen-assisted dissociation, a large fraction of CO is dissociated into carbon deposition and a tiny fraction of CO is hydrogenated into CHx. CO is directly dissociated on the Co(11-20) plane. The weak dissociation of CO on this catalyst results in a trace amount of carbon deposition, and a trace amount of CHx intermediate in the presence of hydrogen.
  • 加载中
    1. [1]

      JAHANGIRI H, BENNETT J, MAHJOUBI P, WILSON K, GU S. A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syngas[J]. Catal Sci Technol,2014,4(8):2210−2229.  doi: 10.1039/C4CY00327F

    2. [2]

      BEZEMER G L, BITTER J H, KUIPERS H, OOSTERBEEK H, HOLEWIJN J E, XU X D, KAPTEIJN F, VAN DILLEN A J, DE JONG K P. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. J Am Chem Soc,2006,128(12):3956−3964.  doi: 10.1021/ja058282w

    3. [3]

      DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, BITTER J H, HOLMEN A, DE JONG K P. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. J Am Chem Soc,2009,131(20):7197−7203.  doi: 10.1021/ja901006x

    4. [4]

      YANG J, TVETEN E Z, CHEN D, HOLMEN A. Understanding the effect of cobalt particle size on Fischer-Tropsch synthesis: Surface species and mechanistic studies by SSITKA and Kinetic Isotope Effect[J]. Langmuir,2010,26(21):16558−16567.  doi: 10.1021/la101555u

    5. [5]

      SAVOST’YANOV A P, YAKOVENKO R E, NAROCHNYI G B, BAKUN V G, SULIMA S L, YAKUBA E S, MITCHENKO S A. Industrial catalyst for the selective Fischer-Tropsch synthesis of long-chain hydrocarbons[J]. Kinet Catal,2017,58(1):81−91.  doi: 10.1134/S0023158417010062

    6. [6]

      CIOBICA I M, KRAMER G J, GE Q, NEUROCK M, VAN SANTEN R A. Mechanisms for chain growth in Fischer-Tropsch synthesis over Ru(0001)[J]. J Catal,2002,212(2):136−144.  doi: 10.1006/jcat.2002.3742

    7. [7]

      Liu J X, Su H Y, Sun D P, Zhang B Y, Li W X. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC[J]. J Am Chem Soc,2013,135(44):16284−16287.  doi: 10.1021/ja408521w

    8. [8]

      SHETTY S, VAN SANTEN R A. Hydrogen induced CO activation on open Ru and Co surfaces[J]. Phys Chem Chem Phys,2010,12(24):6330−6332.  doi: 10.1039/b926731j

    9. [9]

      CHENG J, HU P, ELLIS P, FRENCH S, KELLY G, LOK C M. First-principles study of oxygenates on Co surfaces in Fischer-Tropsch synthesis[J]. J Phys Chem C,2008,112(25):9464−9473.  doi: 10.1021/jp802242t

    10. [10]

      INDERWILDI O R, JENKINS S J, KING D A. Fischer-Tropsch mechanism revisited:   Alternative pathways for the production of higher hydrocarbons from synthesis gas[J]. J Phys Chem C,2008,112(5):1305−1307.  doi: 10.1021/jp710674q

    11. [11]

      WAGNER C, HAUFFE Z. Untersuchungen ber den stationären zustand von katalysatoren bei heterogenen reaktionen. II.[J]. Zeitchrift fur elektrochemie und angewandte physikalische chemie,1939,45:409−426.

    12. [12]

      TAMARU K. Adsorption measurements during surface catalysis[J]. Bull Chem Soc Jpn,1958,31(5):666−667.  doi: 10.1246/bcsj.31.666

    13. [13]

      ATHARIBOROUJENY M, RAUB A, IABLOKOV V, CHENAKIN S, KOVARIK L, KRUSE N. Competing mechanisms in CO hydrogenation over Co-MnOx catalysts[J]. ACS Catal,2019,9(6):5603−5612.  doi: 10.1021/acscatal.9b00967

    14. [14]

      CHEN W, PESTMAN R, ZIJLSTRA B, FILOT I A W, HENSEN E J M. Mechanism of cobalt-catalyzed CO hydrogenation: 1. Methanation[J]. ACS Catal,2017,7(12):8050−8060.  doi: 10.1021/acscatal.7b02757

    15. [15]

      SHETTY S, VAN SANTEN R A. CO dissociation on Ru and Co surfaces: The initial step in the Fischer-Tropsch synthesis[J]. Catal Today,2011,171(1):168−173.  doi: 10.1016/j.cattod.2011.04.006

    16. [16]

      QIN C, HOU B, WANG J, WANG Q, WANG G, YU M, CHEN C, JIA L, LI D. Crystal-plane-dependent Fischer-Tropsch performance of cobalt catalysts[J]. ACS Catal,2018,8(10):9447−9455.  doi: 10.1021/acscatal.8b01333

    17. [17]

      SCHWEICHER J, BUNDHOO A, FRENNET A, KRUSE N, DALY H, MEUNIER F C. DRIFTS/MS studies during chemical transients and SSITKA of the CO/H2 reaction over Co-MgO catalysts[J]. J Phys Chem C,2010,114(5):2248−2255.  doi: 10.1021/jp909754w

    18. [18]

      KRUSE N, SCHWEICHER J, BUNDHOO A, FRENNET A, DE BOCARME T V. Catalytic CO hydrogenation: Mechanism and kinetics from chemical transients at low and atmospheric pressures[J]. Top Catal,2008,48(1/4):145−152.  doi: 10.1007/s11244-008-9045-8

    19. [19]

      SCHWEICHER J, BUNDHOO A, KRUSE N. Hydrocarbon chain lengthening in catalytic CO hydrogenation: Evidence for a CO-Insertion Mechanism[J]. ACS Catal,2012,134(39):16135−16138.

    20. [20]

      RAUB A, KARROUM H, ATHARIBOROUJENY M, KRUSE N. Chemical transient kinetics in studies of the Fischer-Tropsch reaction and beyond[J]. Catal Lett, 2021, 151: 613−626 .

    21. [21]

      WANG T, DING Y, XIONG J, YAN L, ZHU H, LU Y, LIN L. Effect of vanadium promotion on activated carbon-supported cobalt catalysts in Fischer-Tropsch synthesis[J]. Catal Lett,2006,107(1/2):47−52.  doi: 10.1007/s10562-005-9730-1

    22. [22]

      FLOTO M E, CIUFO R A, HAN S, MULLINS C B. CO dissociation on model Co/SiO2 catalysts-effect of adsorbed hydrogen[J]. Surf Sci,2021,705:121783.  doi: 10.1016/j.susc.2020.121783

    23. [23]

      ZHANG R, LIU F, WNAG Q, WANG B, LI D. Insight into CHx formation in Fischer-Tropsch synthesis on the hexahedron Co catalyst: Effect of surface structure on the preferential mechanism and existence form[J]. Appl Catal A: Gen,2016,525:76−84.  doi: 10.1016/j.apcata.2016.07.007

    24. [24]

      SU H Y, ZHAO Y H, LIU J X, SUN K J, LI W X. First-principles study of structure sensitivity of chain growth and selectivity in Fischer-Tropsch synthesis using HCP cobalt catalysts[J]. Catal Sci Technol,2017,7(14):2967−2977.  doi: 10.1039/C7CY00706J

    25. [25]

      QI Y, YANG J, CHEN D, HOLMEN A. Recent progresses in understanding of Co-based Fischer-Tropsch catalysis by means of transient kinetic studies and theoretical analysis[J] Catal Lett, 2014, 145(1): 145-161.

    26. [26]

      OJEDA M, NABAR R, NILEKAR A U, ISHIKAWA A, MAVRIKAKIS M, IGLESIA E. CO activation pathways and the mechanism of Fischer-Tropsch synthesis[J]. J Catal,2010,272(2):287−297.  doi: 10.1016/j.jcat.2010.04.012

    27. [27]

      RALSTON W T, MELAET G, SAEPHAN T, SOMORJAI G A. Evidence of structure sensitivity in the Fischer-Tropsch reaction on model cobalt nanoparticles by time-resolved chemical transient kinetics[J]. Angew Chem Int Ed,2017,56(26):7415−7419.  doi: 10.1002/anie.201701186

    28. [28]

      CHEN W, FILOT I A W, PESTMAN R, HENSEN E J M. Mechanism of cobalt-catalyzed CO hydrogenation: 2. Fischer-Tropsch synthesis[J]. ACS Catal,2017,7(12):8061−8071.  doi: 10.1021/acscatal.7b02758

    29. [29]

      ZHANG X, VAN SANTEN R A, HENSEN E J M. Carbon-induced surface transformations of cobalt[J]. ACS Catal,2015,5(2):596−601.  doi: 10.1021/cs501484c

    30. [30]

      VAN SANTEN R A, MARKVOORT A J, FILOT I A W, GHOURI M M, HENSEN E J M. Mechanism and microkinetics of the Fischer-Tropsch reaction[J]. Phys Chem Chem Phys,2013,15(40):17038.  doi: 10.1039/c3cp52506f

    31. [31]

      NI Z, KANG S, BAI J, LI Y, HUANG Y, WANG Z, QIN H, LI X. Uniformity dispersive, anti-coking core@double-shell-structured Co@SiO2@C: Effect of graphitic carbon modified interior pore-walls on C5+ selectivity in Fischer-Tropsch synthesis[J]. J Colloid Interf Sci,2017,505:325−331.  doi: 10.1016/j.jcis.2017.05.096

    32. [32]

      GUAN H, WANG X, CHEN S, BANDO Y, GOLBERG D. Coaxial Cu-Si@C array electrodes for high-performance lithium ion batteries[J]. Chem Commun,2011,47(44):12098−12100.  doi: 10.1039/c1cc15595d

    33. [33]

      PALOMINO R M, MAGEE J W, LLORCA J, SENANAYAKE S D, WHITE M G. The effect of Fe-Rh alloying on CO hydrogenation to C2+ oxygenates[J]. J Catal,2015,329:87−94.  doi: 10.1016/j.jcat.2015.04.033

    34. [34]

      SU J, MAO W, XU X, YANG Z, LI H, XU J, HAN Y. Kinetic study of higher alcohol synthesis directly from syngas over CoCu/SiO2 catalysts[J]. AIChE J,2014,60(5):1797−1809.  doi: 10.1002/aic.14354

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    3. [3]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    16. [16]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(23)
  • Abstract views(3006)
  • HTML views(491)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return