Citation: Chuan-min CHEN, Hao CHANG, Wen-bo JIA, Song-tao LIU, Yue CAO, Ruo-xi CHEN, Chuan-xi QIAO. Experimental study on Mn-doped VWTi catalyst for denitrification in wide temperature range[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(3): 357-365. doi: 10.19906/j.cnki.JFCT.2021085 shu

Experimental study on Mn-doped VWTi catalyst for denitrification in wide temperature range

  • Corresponding author: Chuan-min CHEN, hdccm@126.com
  • Received Date: 20 August 2021
    Revised Date: 22 September 2021

Figures(13)

  • A series of manganese-doped VWTi catalysts were prepared by the sol-gel method, and the denitrification performance of the catalysts in a wide temperature range was tested on a fixed bed reactor to examine the influences of catalyst preparation process, flue gas components, reaction temperature, gas hourly space velocity on denitrification activity of the catalyst. The catalyst was characterized and analyzed by means of BET, XRD, XPS, SEM and H2-TPR. The results show that Mn doping significantly improves the denitrification efficiency of the catalyst in the range of 200–300 ℃, and a lower drying temperature is beneficial to improve the denitrification activity of the catalyst. The characterization results of the catalyst show that with the drying temperature increase, the TiO2 on the catalyst surface changes from anatase crystal form to rutile crystal form, the proportion of chemically adsorbed oxygen on the surface of the catalyst is significantly reduced, the proportion of high valence manganese is reduced, the proportion of manganese and vanadium as the active components of the catalyst surface is significantly reduced, and the low-temperature reduction peak of the catalyst gradually disappears. These all reduce the catalytic oxidation activity of catalysts.
  • 加载中
    1. [1]

      HU Peng, DUAN Yu-feng, CHEN Ya-nan, DING Wei-ke, LI Chun-feng, LI Na, LIU Shuai, LIU Meng, WANG Shuang-qun. Effect of calcination temperature on Mo-Mn/TiO2 catalyst denitrification and mercury removal activity[J]. Chem Ind Eng Prog,2018,37(1):119−127.

    2. [2]

      LIU En-li, ZHANG Qiang, CHEN Wei-tang. Frequently asked questions and suggestions on ultra-low emissions from coal-fired power plants in my country[J]. Guangdong Chem Ind,2021,48(10):159−160.  doi: 10.3969/j.issn.1007-1865.2021.10.059

    3. [3]

      WANG Ming-hong, WANG Liang-liang, LIU Jun, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Promotion of transition metals on low-temperature activity of CeO2@TiO2 catalysts for selective catalytic reduction and denitrification[J]. J Fuel Chem Technol,2017,45(4):497−504.

    4. [4]

      ZHAO Li. Experimental study on preparation of modified vanadium-titanium-based mid-temperature SCR denitrification catalyst in wide temperature range and sulfur poisoning regeneration[D]. Nanjing: Southeast University, 2017.

    5. [5]

      ZHANG S, ZHAO Y, WANG Z, ZHANG J, WANG L, ZHENG C. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2[J]. J Environ Sci,2017,53:141−150.  doi: 10.1016/j.jes.2015.10.038

    6. [6]

      DONG Lu, HUANG Ya-ji, DING Shou-yi, CHENG Hao-qiang, WANG Sheng, DUAN Yu-feng. Simultaneous denitrification and mercury removal experiment on Ti-Al composite carrier supported manganese catalyst[J]. Chem Ind Eng Prog,2021,40(1):234−241.

    7. [7]

      ZHANG T, SUN C, CHEN X, YUAN D. Research progress on deactivation and regeneration of manganese-based low-temperature denitrification catalysts[J]. Ind Catal,2021,29(7):22−27.  doi: 10.3969/j.issn.1008-1143.2021.07.003

    8. [8]

      LI Hai-long. Study on the catalytic oxidation mechanism of new SCR catalysts for mercury[D]. Wuhan: Huazhong University of Science and Technology, 2011.

    9. [9]

      ZHANG S, ZHAO Y, YANG J, ZHANG J, ZHENG C. Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas[J]. Chem Eng J,2018,348:618−629.

    10. [10]

      QI W, LEI D, HE K, LI J. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas[J]. Chem Eng J,2011,170(2/3):512−517.  doi: 10.1016/j.cej.2010.11.060

    11. [11]

      WANG Peng-ying, SU Sheng, XIANG Jun, CAO Fan, YOU Mo. Experimental study on low temperature SCR catalyst for denitrification and mercury removal[J]. J Combust Sci Technol,2014,20(5):423−427.

    12. [12]

      XU W, WANG H, XUAN Z, ZHU T. CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation[J]. Chem Eng J,2014,243(1):380−385.

    13. [13]

      GAO W, LIU Q, WU C, LI H, LI Y, YANG J, WU G. Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst - ScienceDirect[J]. Chem Eng J,2013,220(11):53−60.

    14. [14]

      ZHANG B, LIU J, DAI G, CHANG M, ZHENG C. Insights into the mechanism of heterogeneous mercury oxidation by HCl over V2O5/TiO2 catalyst: Periodic density functional theory study[J]. Proc Combust Inst,2015,35(3):2855−2865.

    15. [15]

      WANG P, SHENG S, XIANG J, YOU H, FAN C, SUN L, SONG H, YUN Z. Catalytic oxidation of Hg0 by MnOx-CeO2/γ-Al2O3 catalyst at low temperatures[J]. Chemosphere,2014,101:49−54.

    16. [16]

      WU J, ZHAO Z, HUANG T, SHENG P, ZHANG J, TIAN H, ZHAO X, ZHAO L, HE P, REN J. Removal of elemental mercury by Ce-Mn co-modified activated carbon catalyst[J]. Catal Commun,2017,93(Complete):62−66.

    17. [17]

      XIANG G, YE J, YI Z, LUO Z, CEN K. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. J Hazard Mater,2010,174(1/3):734−739.  doi: 10.1016/j.jhazmat.2009.09.112

    18. [18]

      JOSSEN R, HEINE M, PRATSINIS S, AUGUSTINE S, AKHTAR M. Thermal stability and catalytic activity of flame-made silica-vanadia-tungsten oxide-titania[J]. Appl Catal B: Environ,2007,69(3):181−188.

    19. [19]

      SHENG H, ZHOU J, ZHU Y, LUO Z, NI M, CEN K. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst[J]. Energy Fuels,2009,23(1):253−259.  doi: 10.1021/ef800730f

    20. [20]

      ZONG L, DONG F, ZHANG G, HAN W, TANG Z, ZHANG J. Highly efficient mesoporous V2O5/WO3-TiO2 catalyst for selective catalytic reduction of NOx: Effect of the valence of V on the catalytic performance[J]. Catal Surv Asia,2017,21(3):103−113.  doi: 10.1007/s10563-017-9229-y

    21. [21]

      ZHI B, DING H, WANG D, CAO Y, ZHANG Y, WANG X, LIU Y, HUO Q. Ordered mesoporous MnO2 as a synergetic adsorbent for effective arsenic(III) removal[J]. J Mater Chem,2014,2(7):2374−2382.  doi: 10.1039/c3ta13790b

    22. [22]

      WU Yan-xia, LIANG Hai-long, CHEN Xin, CHEN Chen, WANG Xian-zhong, DAI Zhang-you, HU Li-ming, CHEN Yu-feng. Influence of preparation method on denitrification performance of V-Mo/TiO2 catalyst[J]. J Fuel Chem Technol,2020,48(2):70−77.

    23. [23]

      ZHANG S, ZHAO Y, WANG Z, ZHANG J, WANG L, ZHENG C. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2[J]. J Environ Sci,2017,53(3):141−150.

    24. [24]

      XIE J, YAN N, YANG S, ZAN Q, CHEN W, ZHANG W, LI K, LIU P, JIA J. Synthesis and characterization of nano-sized Mn-TiO2 catalysts and their application to removal of gaseous elemental mercury[J]. Res Chem Intermediat,2012,38(9):2511−2522.  doi: 10.1007/s11164-012-0568-z

    25. [25]

      YANG J, ZHANG M, LI H, QU W, ZHAO Y, ZHANG J. Simultaneous NO reduction and Hg0 oxidation over La0.8Ce0.2MnO3 perovskite catalysts at low temperature[J]. Ind Eng Chem Res,2018,57(29):9374−9385.  doi: 10.1021/acs.iecr.8b01431

    26. [26]

      WANG Dong, ZHANG Xin-li, PENG Jian-sheng, LU Chun-mei, HAN Kui-hua, XU Li-ting. Effect of calcination temperature on the structure and denitrification activity of γ-Fe2O3 catalyst[J]. Res Environ Sci,2015,28(5):808−815.

    27. [27]

      WU P, ZHANG Y, ZHUANG K, SHEN K, WANG S, HUANG T. Promoting effect and mechanism of neodymium on low-temperature selective catalytic reduction with NH3 over Mn/TiO2 catalysts[J]. J Rare Earth,2019,38(11):10.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    6. [6]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    7. [7]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    17. [17]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    18. [18]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    19. [19]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(0)
  • Abstract views(1850)
  • HTML views(356)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return