Citation: Qi-qi ZHUANG, Jing-pei CAO, Yan WU, Yu-lei WEI, Zhi-hui YANG, Xiao-yan ZHAO. Preparation of three-dimensional coal tar pitch based porous carbon by α-Fe2O3 template for high performance supercapacitor[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 408-417. doi: 10.19906/j.cnki.JFCT.2021084 shu

Preparation of three-dimensional coal tar pitch based porous carbon by α-Fe2O3 template for high performance supercapacitor

  • Corresponding author: Jing-pei CAO, caojingpei@cumt.edu.cn
  • Received Date: 10 August 2021
    Revised Date: 19 September 2021

Figures(7)

  • In this paper, three-dimensional hierarchical porous carbons (HPCs) were prepared using coal tar pitch as raw material and α-Fe2O3 as template combined with KOH activation. The as-prepared HPC-3 showed large specific surface area (2003 m2/g), which was due to the synergistic effect of the occupation of α-Fe2O3 (certain mesopores and macropores) and KOH activation (abundant micropores). And the assembled electric double layer capacitor by HPC-3 exhibited the largest specific capacitance (295 F/g) and superior cycling stability (specific capacitance retention of 97.8% after 10000 cycles) in 6 mol/L KOH electrolyte. Meanwhile, the high working voltage (3.6 V) and energy density (60.0 (W·h)/kg) were obtained when it was applied to EMIMBF4 electrolyte.
  • 加载中
    1. [1]

      YU Xing-hai, LUO Qi-liang, PAN Jian, HAN Yu-qi, ZHANG Qi-feng. Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte[J]. J Chem Ind Eng,2019,70(9):3590−3600.

    2. [2]

      GUAN T T, LI K X, ZHAO J H, ZHAO R J, ZHANG G L, ZHANG D D, WANG J L. Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors[J]. J Mater Chem A,2017,5(30):15869−15878.  doi: 10.1039/C7TA02966G

    3. [3]

      WU Y, CAO J P, ZHUANG Q Q, ZHAO X Y, ZHOU Z, WEI Y L, ZHAO M, BAI H C. Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte[J]. Electrochim Acta,2021,371:137825.  doi: 10.1016/j.electacta.2021.137825

    4. [4]

      GUO Y, SHI Z Q, CHEN M M, WANG C Y. Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors[J]. J Power Sources,2014,252:235−243.  doi: 10.1016/j.jpowsour.2013.11.114

    5. [5]

      KAZAZI M. Effect of electrodeposition current density on the morphological and pseudocapacitance characteristics of porous nano-spherical MnO2 electrode[J]. Ceram Int,2018,44(9):10863−10870.  doi: 10.1016/j.ceramint.2018.03.138

    6. [6]

      JAIDEV, RAMAPRABHU S. Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications[J]. J Mater Chem A,2012,22(36):18775−18783.  doi: 10.1039/C2JM33627H

    7. [7]

      CHEN Zhong-hua, ZENG Ming, LI Liang, YANG Yu-pei, MO Qin, ZHANG Ya-feng, XIONG Lin-ying, HU Zhang-run, PENG Ya. Research progress on conductive polymers /polyurethane composites[J]. Mod Chem Ind,2020,40(5):73−81.

    8. [8]

      ZHAO W D, ZHU Y, ZHANG L T, XIE Y L, YE X R. Facile synthesis of three-dimensional porous carbon for high-performance supercapacitors[J]. J Alloys Compd,2019,787:1−8.  doi: 10.1016/j.jallcom.2019.02.025

    9. [9]

      WANG D, WANG Z Y, LI Y, DONG K Z, SHAO J H, LIU Y G, QI X W. In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li- and Na-ion batteries[J]. Appl Surf Sci,2019,464:422−428.  doi: 10.1016/j.apsusc.2018.09.035

    10. [10]

      HE X J, LI X J, MA H, HAN J F, ZHANG H, YU C, XIAO N, QIU J S. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. J Power Sources,2017,340(1):183−191.

    11. [11]

      LU P, SUN Y, XIANG H F, LIANG X, YU Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Adv Energy Mater,2018,8(8):1702434.  doi: 10.1002/aenm.201702434

    12. [12]

      XING B L, ZHANG C T, LIU Q R, ZHANG C X, HUANG G X, GUO H, CAO J L, CAO Y J, YU J L, CHEN Z F. Green synthesis of porous graphitic carbons from coal tar pitch templated by nano-CaCO3 for high-performance lithium-ion batteries[J]. J Alloys Compd,2019,795:91−102.  doi: 10.1016/j.jallcom.2019.04.300

    13. [13]

      HE X J, ZHAO N, QIU J S, XIAO N, YU M X, YU C, ZHANG X Y, ZHENG M D. Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation[J]. J Mater Chem A,2013,1(33):9440−9448.  doi: 10.1039/c3ta10501f

    14. [14]

      SONG H J, SUN Y L, JIA X H. Hydrothermal synthesis, growth mechanism and gas sensing properties of Zn-doped α-Fe2O3 microcubes[J]. Ceram Int,2015,41(10):13224−13231.  doi: 10.1016/j.ceramint.2015.07.100

    15. [15]

      DONG Li-li, REN Su-xia, SHI Jie, ZHANG Xiu-qiang, ZHANG Jin-bin. Preparation and electrochemical performance of activated carbon from coal pitch with KCl as template[J]. Carbon Tech,2019,38(6):44−48.

    16. [16]

      WU Y, CAO J P, ZHAO X Y, HAO Z Q, ZHUANG Q Q, ZHU J S, WANG X Y, WEI X Y. Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor[J]. Electrochim Acta,2017,252:397−407.  doi: 10.1016/j.electacta.2017.08.176

    17. [17]

      MANGISETTI S R, KAMARAJ M, RAMAPRABHU S. N-doped 3D porous carbon-graphene/polyaniline hybrid and N-doped porous carbon coated gC3N4 nanosheets for excellent energy density asymmetric supercapacitors[J]. Electrochim Acta,2019,305:264−277.  doi: 10.1016/j.electacta.2019.03.043

    18. [18]

      XU Xiao-qian, CHENG Jun-xia, ZHU Ya-ming, GAO Li-juan, LAI Shi-quan, ZHAO Xue-fei. Electrochemical properties of supercapacitor electrode materials made from needle coke[J]. J Chem Ind Eng,2020,71(6):2830−2839.

    19. [19]

      WANG D H, WANG Y Z, CHEN Y, LIU W, WANG H Q, ZHAO P H, LI Y, ZHANG J F, DONG Y G, HU S L, YANG J L. Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formed g-C3N4 as a template for supercapacitor electrodes[J]. Electrochim Acta,2018,283:132−140.  doi: 10.1016/j.electacta.2018.06.151

    20. [20]

      HE X J, ZHANG H B, ZHANG H, LI X J, XIAO N, QIU J S. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. J Mater Chem A,2014,2(46):19633−19640.  doi: 10.1039/C4TA03323J

    21. [21]

      TSENG R L, TSENG S K, WU F C, HU C C, WANG C C. Effects of micropore development on the physicochemical properties of KOH-activated carbons[J]. J Chin Inst Chem Eng,2008,39(1):37−47.  doi: 10.1016/j.jcice.2007.11.005

    22. [22]

      DING L L, ZOU B, LIU H Q, LI Y N, WANG Z C, SU Y, GUO Y P, WANG X F. A new route for conversion of corncob to porous carbon by hydrolysis and activation[J]. Chem Eng J,2013,225:300−305.  doi: 10.1016/j.cej.2013.03.090

    23. [23]

      WU Yan, CAO Jing-pei, ZHOU Zhi, ZHUANG Qi-qi, WEI Yu-lei, ZHAO Xiao-yan. High-performance supercapacitors of porous carbon spheres synthesis from waste liquid[J]. J Fuel Chem Technol,2021,49(4):537−545.

    24. [24]

      WANG H C, LIU X P, ZHANG B C, YANG J B, ZHANG Z J, YUE R R, WANG Z W. Highly compressible supercapacitor based on carbon nanotubes-reinforced sponge electrode[J]. J Alloys Compd,2019,786:995−1004.  doi: 10.1016/j.jallcom.2019.01.303

    25. [25]

      JIAO Shuai, YANG Lei, WU Ting-ting, LI Hong-qiang, LV Hui-hong, HE Xiao-jun. Synthesis of nitrogen doped hierarchically porous carbon nanosheets for supercapacitor by mixed salt template[J]. J Chem Ind Eng,2020,72(5):9−25.

    26. [26]

      ZHONG Cun-gui, CAO Qing, XIE Xiao-ling, GONG Shi-lei, ZHOU Chun-ming, WANG Ying. Preparation of pitch-based carbon materials by pyrolytic calcium carbonate template for supercapacitors[J]. J Funct Mater,2015,46(24):24077−24082.

    27. [27]

      PENG H, MA G F, SUN K J, MU J J, ZHANG Z, LEI Z Q. Facile synthesis of poly(p-phenylenediamine)-derived three-dimensional porous nitrogen-doped carbon networks for high performance supercapacitors[J]. J Phys Chem C,2014,118(51):29507−29516.  doi: 10.1021/jp508684t

    28. [28]

      GUAN L, PAN L, PENG T Y, CAO C, ZHAO W N, YANG Z X, HU H, WU M B. Synthesis of biomass-derived nitrogen-doped porous carbon nanosheests for high-performance supercapacitors[J]. ACS Sustainable Chem Eng,2019,7(9):8405−8412.  doi: 10.1021/acssuschemeng.9b00050

    29. [29]

      HE X J, YU H H, FAN L W, YU M X, ZHENG M D. Honeycomb-like porous carbons synthesized by a soft template strategy for supercapacitors[J]. Mater Lett,2017,195:31−33.  doi: 10.1016/j.matlet.2017.02.062

    30. [30]

      XIE X Y, HE X J, SHAO X L, DONG S, XIAO N, QIU J S. Synthesis of layered microporous carbons from coal tar by directing, space-confinement and self-sacrificed template strategy for supercapacitors[J]. Electrochim Acta,2017,246:634−642.  doi: 10.1016/j.electacta.2017.06.092

    31. [31]

      WEI F, ZHANG H F, HE X J, MA H, DONG S A, XIE X Y. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Mater,2019,34(2):132−139.  doi: 10.1016/S1872-5805(19)60006-5

    32. [32]

      HE Yi-ting, LI Xiao, YANG Tao, TIAN Xiao-dong, XU Xiao-tong, SONG Yan, LIU Zhan-jun. Preparation of pitch/polyacrylonitrile carbon nanofiber non-woven fabrics as the electrode for supercapacitors[J]. New Carbon Mater,2021,36(1):227−234.

    33. [33]

      KARNAN M, SUBRAMANI K, SRIVIDHYA P K, SATHISH M. Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and non-aqueous electrolytes[J]. Electrochim Acta,2017,228:586−596.  doi: 10.1016/j.electacta.2017.01.095

    34. [34]

      SUN X Z, ZHANG X, ZHANG H T, ZHANG D C, MA Y W. A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes[J]. J Solid State Electr,2012,16(8):2597−2603.  doi: 10.1007/s10008-012-1678-7

    35. [35]

      OYEDOTUN K O, MASIKHWA T M, LINDBERG S, MATIC A, JOHANSSON P, MANYALA N. Comparison of ionic liquid electrolyte to aqueous electrolytes on carbon nanofibres supercapacitor electrode derived from oxygen-functionalized graphene[J]. Chem Eng J,2019,375:121906.  doi: 10.1016/j.cej.2019.121906

    36. [36]

      WANG D, WANG Y, LIU H, XU W, XU L. Unusual carbon nanomesh constructed by interconnected carbon nanocages for ionic liquid-based supercapacitor with superior rate capability[J]. Chem Eng J,2018,342:474−483.  doi: 10.1016/j.cej.2018.02.085

  • 加载中
    1. [1]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    12. [12]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    13. [13]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    14. [14]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    15. [15]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    16. [16]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    17. [17]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    18. [18]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    19. [19]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    20. [20]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

Metrics
  • PDF Downloads(0)
  • Abstract views(467)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return