Citation: Tian GAO, Ri-hong XIAO, Xing CHUAI, Zhuo XIONG, Geng WEI, Tie LI, Kai YANG, Guo LI, Yong-chun ZHAO, Jun-ying ZHANG. Study on mercury emission characteristics of circulating fluidized bed boiler and pulverized coal boiler[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(3): 275-282. doi: 10.19906/j.cnki.JFCT.2021075 shu

Study on mercury emission characteristics of circulating fluidized bed boiler and pulverized coal boiler

  • Corresponding author: Yong-chun ZHAO, yczhao@hust.edu.cn
  • Received Date: 8 July 2021
    Revised Date: 1 August 2021

Figures(9)

  • A 600 MW circulating fluidized bed boiler power plant and a 1000 MW pulverized coal boiler power plant were selected to study mercury migration, transformation and emission characteristics. The mercury concentration in flue gas was sampled by EPA 30B method, and the solid and liquid samples such as furnace-incoming coal, fly ash, bottom slag, limestone, process water, desulfurization gypsum and desulfurization wastewater were collected for analysis. The synergetic effect of existing pollutant control devices on mercury removal in two power plants was studied, and the migration and transformation law of mercury was discussed. After the flue gas of the two power plants passes through APCDs, the total mercury removal rate reaches over 88%, and the final mercury concentrations of the flue gas are 1.85 and 1.10 μg/m3, which are far lower than the national requirements. Under the existing equipment conditions, the ultra-low mercury emission can be realized.
  • 加载中
    1. [1]

      XIN Feng, WEI Shu-zhou, ZHANG Jun-feng, MA Si-ming, ZHAO Yong-chun, ZHANG Jun-ying. Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents[J]. J Fuel Chem Technol,2020,48(12):1409−1420.  doi: 10.3969/j.issn.0253-2409.2020.12.002

    2. [2]

      TIAN H Z, ZHU C Y, GAO J J, CHENG K, НAO J M, WANG K, HUA S B, WANG Y, ZHOU J R. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies[J]. Atmos Chem Phys,2015,15(8):12107−12166.

    3. [3]

      WU Q, WANG S, LIU K, HAO J. Emission-limit-oriented strategy to control atmospheric mercury emissions in coal-fired power plants toward the implementation of the minamata convention[J]. Environ Sci Technol,2018,52(19):11087−11093.  doi: 10.1021/acs.est.8b02250

    4. [4]

      NIU Li-li, XU Chao, LIU Wei-ping. Overviews of mercury emission from coal combustion in China and technology of mercury-removing by activated carbon[J]. Environ Sci Technol,2012,35(9):45−55.  doi: 10.3969/j.issn.1003-6504.2012.09.011

    5. [5]

      XU Li-meimei, LI Cai-ting, Xazadam·Ablikin, GAO Zhao. Development of mercury pollution control of flue gas with existing treatment eouipments and technioues in coal-fired power plant[J]. Environ Eng,2010,28(3):77−80.

    6. [6]

      LIU Fei, QIAO Shao-hua, YAN Nai-qiang, QU Zan, JIA Jin-ping. Progress of elemental mercury control from coal-fired flue gas[J]. Environ Sci Technol,2012,35(6):58−63.  doi: 10.3969/j.issn.1003-6504.2012.06.014

    7. [7]

      LIU Xuan, SU Yin-jiao, ZHAO Yuan-cai, TENG Yang, ZHANG Kai, ZHANG Yong-hong. Distribution and enrichment characteristics of arsenic in feed-coal and by-products of coal-fired power plants[J]. J Fuel Chem Technol,2020,48(12):1513−1519.  doi: 10.3969/j.issn.0253-2409.2020.12.013

    8. [8]

      TANG Nian, PAN Si-wei. Study on mercury emission and migration from large-scale pulverized coal-fired boiler[J]. J Fuel Chem Technol,2013,41(4):484−490.  doi: 10.3969/j.issn.0253-2409.2013.04.015

    9. [9]

      CAO Y, GAO Z, ZHU J, WANG Q, HUANG Y, CHIU C, PARKER B, CHU P, PAN W. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal[J]. Environ Sci Technol,2008,42(1):256−261.  doi: 10.1021/es071281e

    10. [10]

      WANG Zheng, XUE Jian-ming, XU Yue-yang, WANG Hong-liang, LIU Jun. Research on influencing factors of SCR's cooperative control in mercury emissions from coal-fired flue[J]. Proc CSEE,2013,33(14):32−37.

    11. [11]

      XU Yue-yang, XUE Jian-ming, WANG Hong-laing, LI Bing, GUAN Yi-ming, LIU Jun. Research on mercury collaborative control by conventional pollutants purification facilities of coal-fired power plants[J]. Proc CSEE,2014,34(23):3924−3931.

    12. [12]

      LEE C W, SRIVASTAVA R K, GHORISHI S B HASTINGS T W, STEVENS F M. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions[J]. J Air Waste Manage,2004,54(12):1560−1566.  doi: 10.1080/10473289.2004.10471009

    13. [13]

      CHEN Lei, DUAN Yu-feng, ZHAO Shi-lin, LI Ya-ning. Mercury Co-removal by the air pollutant control devices in a 350 MW ultra-low emission coal-fired power plant[J]. J Eng Therm Energy Power,2020,35(2):187−193.

    14. [14]

      LI H, LI Y, WU C, ZHANG J. Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas[J]. Chem Eng J,2011,169(1/3):186−193.  doi: 10.1016/j.cej.2011.03.003

    15. [15]

      SUI Hui, ZHANG Meng-ze, DONG Yong, WANG Peng. Research progress of adsorption and oxidation mechanism of elemental mercury from coal-fired flue gas[J]. Chem Ind Eng Prog,2014,33(6):1582−1588.

    16. [16]

      WANG Chen-ping, DUAN Yu-feng, ZHAO Shi-lin, LI Ya-ning, ZHU Chun, SHE Min, LIU Meng, WEI Hong-qi, WANG Shuang-qun. Effects of coal combustion temperature on mercury emission and speciation[J]. Chem Ind Eng Prog,2017,36(5):1899−1905.

    17. [17]

      ZHOU Y, YANG J, DONG L, GAO T, LI Z, JI Y, ZHAO Y, PAN S, ZHANG J, ZHENG C. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres from fly ash. Part 5. Industrial scale studies at a 50MWth coal-fired power plant[J]. Fuel,2020,266:1−8.

    18. [18]

      PUDASAINEE D, KIM J, YOON Y, SEO YC. Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CS-ESP and wet FGD[J]. Fuel,2012,93(1):312−318.

    19. [19]

      LIU H, CHEN Y, GAO T, YANG G, ZHANG J. Elemental mercury removal from flue gas using modified tonstein: Performance of adsorbent injection at an entrained flow reactor system and 50-MW coal-fired power plant in China[J]. J Clean Prod,2020,287:124998.

    20. [20]

      WANG Yun-jun, DUAN Yu-feng, YANG Li-guo, JIANG Yi-man, WU Cheng-jun, WANG Qian, YANG Xiang-hua. Comparison of mercury removal characteristic between fabric filter and electrostatic precipitators of coal-fired power plants[J]. J Fuel Chem Technol,2008,36(1):23−29.  doi: 10.3969/j.issn.0253-2409.2008.01.005

    21. [21]

      YOKOYAMA T, ASAKURA K, MATSUDA H, ITO S, NODA N. Mercury emissions from a coal-fired power plant in Japan[J]. Sci Total Environ,2000,259(1/3):97−103.  doi: 10.1016/S0048-9697(00)00552-0

    22. [22]

      FTHENAKIS V M, LIPFERT F W, MOSKOWITZ P D. An assessment of mercury emissions and health risks from a coal-fired power plant[J]. J Hazard Mater,1995,44(2/3):267−283.  doi: 10.1016/0304-3894(95)00058-3

    23. [23]

      YANG Hong-min, KUN-LEI LIU, YAN CAO, PAN Wei-ping. Demercurization property of flue gas desulfurization installations in power plants[J]. J Chin Soc Power Eng,2006,(4):554−557.

    24. [24]

      HU Chang-xing, ZHOU Jin-song, HE Sheng, ZHANG Le ZHENG Jian-ming, LUO Zhong-yang, CEN Ke-fa. Influence and control of electrostatic precipitators and wet flue gas desulfurization systems on the speciation of mercury in flue gas[J]. J Chin Soc Power Eng,2009,29(4):400−404.

    25. [25]

      LI Zhi-chao, DUAN Yu-feng, WANG Yun-jun, HUANG Zhi-jun, MENG Su-li, SHEN Jie-zhong. Mercury removal by ESP and WFGD in a 300 MW coal-fired power plant[J]. J Fuel Chem Technol,2013,41(4):491−498.  doi: 10.3969/j.issn.0253-2409.2013.04.016

  • 加载中
    1. [1]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    4. [4]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    5. [5]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    6. [6]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    7. [7]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    8. [8]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    12. [12]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    13. [13]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    14. [14]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    17. [17]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    18. [18]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

Metrics
  • PDF Downloads(0)
  • Abstract views(1965)
  • HTML views(316)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return