Citation: Li-ye ZHAO, Heng LI, Liang WANG, Chun-hu LI. Effect of halogen atoms on photocatalytic activity of bismuth oxyhalide (BIOX, X = Cl, Br, I)[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 122-128. doi: 10.19906/j.cnki.JFCT.2021067 shu

Effect of halogen atoms on photocatalytic activity of bismuth oxyhalide (BIOX, X = Cl, Br, I)

Figures(9)

  • BiOCl, BiOBr and BiOI were prepared by hydrothermal and solvothermal methods. XRD, SEM, photocurrent density curve and UV-vis were used to characterize the crystal structure, surface morphology and photoelectric properties. The band structure and density of states of BiOX were calculated by DFT. With the atomic number of halogen increase, the dispersion of the Fermi level near the semiconductor conduction band decreases, and the band gap becomes smaller. The photocatalytic activity of BiOCl, BiOBr and BiOI was evaluated by photocatalytic degradation of Rhodamine B (RhB), and the degradation rate of RhB in 60 min for BiOI could reach 100%. Meanwhile, the main active groups in the process of photocatalytic degradation of RhB were explored by radical trapping experiment.
  • 加载中
    1. [1]

      FENG X F, YU Z X, SUN Y X, LONG RX, SHAN M Y, LI X H, LIU Y C, LIU J H. Review MXenes as a new type of nanomaterial for environmental applications in the photocatalytic degradation of water pollutants[J]. Ceram Int,2020,47(6):7321−7343.

    2. [2]

      ZHU Ze-zhou. Engineering the interface sites for photocatalytic/electrocatalytic CO2 reduction[D]. Hefei: University of Science and Technology of China, 2020.

    3. [3]

      AHMAD K, GHATAK H R, AHUJA S M. A review on photocatalytic remediation of environmental pollutants and H2 production through water splitting: A sustainable approach[J]. Environ Technol Innovation,2020,19:100893.

    4. [4]

      FUJISHIMA, A., HONDA, K. Photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37−38.  doi: 10.1038/238037a0

    5. [5]

      YANG Fan. Precise structure control of TiO2 composite materials and its photocatalytic performance[D]. Hefei: University of Science and Technology of China, 2020.

    6. [6]

      HUANG X J, GUO Q B, YAN B C, LIU H, CHEN K, WEI S S, WU Y H, WANG L. Study on photocatalytic degradation of phenol by BiOI/Bi2WO6 layered heterojunction synthesized by hydrothermal method[J]. J Mol Liq,2021,322:114965.  doi: 10.1016/j.molliq.2020.114965

    7. [7]

      LIU H J, WANG B J, CHEN M, ZHANG H, PENG J B, DING L, WANG W F. Simple synthesis of BiOAc/BiOBr heterojunction composites for the efficient photocatalytic removal of organic pollutants[J]. Sep Purif Technol,2021,261:118286.  doi: 10.1016/j.seppur.2020.118286

    8. [8]

      MOKHTARI F, TAHMASEBI N. Hydrothermal synthesis of W-doped BiOCl nanoplates for photocatalytic degradation of rhodamine B under visible light[J]. J Phys Chem Solids,2021,149:109804.  doi: 10.1016/j.jpcs.2020.109804

    9. [9]

      WANG Y, SUNARSO J, ZHAO B, GE C H, CHNE G H. One-dimensional BiOBr nanosheets/TiO2 nanofibers composite: Controllable synthesis and enhanced visible photocatalytic activity[J]. Ceram Int,2017,43(17):15769−15776.  doi: 10.1016/j.ceramint.2017.08.140

    10. [10]

      YE L Q, JIN X L, LENG Y M, SU Y R, XIE H Q, LIU C. Synthesis of black ultrathin BiOCl nanosheets for efficient photocatalytic H2 production under visible light irradiation[J]. J Power Sources,2015,293:409−415.  doi: 10.1016/j.jpowsour.2015.05.101

    11. [11]

      CUI Y H, YANG L L, ZHENG J, WANG Z K, LI B R, YAN Y, MENG M J. Synergistic interaction of Z-scheme 2D/3D g-C3N4/BiOI heterojunction and porous PVDF membrane for greatly improving the photodegradation efficiency of tetracycline[J]. J Colloid Interf Sci,2021,586:335−348.  doi: 10.1016/j.jcis.2020.10.097

    12. [12]

      BARHOUMI M, SAID M. Correction of band-gap energy and dielectric function of BiOX bulk with GW and BSE[J]. Optik,2020,216:164631.  doi: 10.1016/j.ijleo.2020.164631

    13. [13]

      YE L Q, DENG K J, XU F, TIAN LH, PENG T Y, ZAN L. Increasing visible-light absorption for photocatalysis with black BiOCl[J]. Chem Chem Phys, 2012, 14: 82–85.

  • 加载中
    1. [1]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    8. [8]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    10. [10]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    11. [11]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    12. [12]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    15. [15]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    16. [16]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    17. [17]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    20. [20]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(0)
  • Abstract views(2850)
  • HTML views(1166)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return