Citation: Chang-ming LIANG, An-dong ZAHNG, Zhi-he LI, Yu-feng LI, Shao-qing WANG, Wei-ming YI. Hydrogen production from wood vinegar reforming over cobalt modified nickel-based catalyst[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(2): 168-177. doi: 10.19906/j.cnki.JFCT.2021016 shu

Hydrogen production from wood vinegar reforming over cobalt modified nickel-based catalyst

  • Corresponding author: Zhi-he LI, lizhihe@sdut.edu.cn
  • Received Date: 15 October 2020
    Revised Date: 20 November 2020

Figures(13)

  • In order to realize high value utilization of wood vinegar, a series of Ni based catalysts with different Co contents prepared by impregnation method were tested in a fixed bed reactor. The effects of liquid space-time velocity, reaction temperature and Ni/Co ratio on hydrogen production, carbon conversion, H2 selectivity and carbon deposition were investigated. The catalysts were characterized by XRF, H2-TPR, SEM and elemental analysis. The results show that the gas production increases with the increase of space-time velocity of liquid, but the catalyst deactivation is accelerated when the space-time velocity of liquid is too high. High temperature is conducive to the catalytic reforming of wood vinegar to produce hydrogen. When the temperature reaches 900 °C, the hydrogen yield is the highest. With the increase of cobalt content, the carbon deposition and hydrogen yield decrease. Therefore, when the liquid space velocity is 60 h−1 and the temperature is 800 °C, the Ni-0.5Co/Al2O3 catalyst is most conducive to the hydrogen production experiment of wood vinegar.
  • 加载中
    1. [1]

      SHARMA S, GHOSHAL S K. Hydrogen the future transportation fuel: From production to applications[J]. Renewable Sustainable Energy Rev,2015,43:1151−1158.  doi: 10.1016/j.rser.2014.11.093

    2. [2]

      WU Q, ZHANG S, HOU B. Study on the preparation of wood vinegar from biomass residues by carbonization process[J]. Bioresour Technol,2015,179:98−103.  doi: 10.1016/j.biortech.2014.12.026

    3. [3]

      WANG Hai-ying, YANG Guo-ting, ZHOU Dan. Research situation and comprehensive utilization of wood vinegar[J]. J Northeast For Univ,2004,9(5):55−57.  doi: 10.3969/j.issn.1000-5382.2004.05.020

    4. [4]

      ORAMAHI H A, YOSHIMURA T. Antifungal and antitermitic activities of wood vinegar from Vitex pubescens Vahl[J]. J Wood Sci,2013,59(4):344−350.  doi: 10.1007/s10086-013-1340-8

    5. [5]

      MUNGKUNKAMCHAO T, KESMALA T, PIMRATCH S, TOOMSAN B, JOTHITYANGKOON D. Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.)[J]. Sci Hortic,2013,154:66−72.  doi: 10.1016/j.scienta.2013.02.020

    6. [6]

      LU Xin-cheng, JIANG Jian-chun, SUN Kang, SUN Yun-juan. Review on preparation and application of wood vinegar[J]. Chem Ind Forest Prod,2017,37(3):1−9.  doi: 10.3969/j.issn.0253-2417.2017.03.001

    7. [7]

      JIANG En-chen, ZHAO Chen-xi, QIN Li-yuan, CHEN Ai-hui. Experiment of wood vinegar produced from pine nut shell continuous pyrolysis[J]. Trans CSAE,2014,30(5):262−269.  doi: 10.3969/j.issn.1002-6819.2014.05.033

    8. [8]

      XU X, JIANG E, LI B, WANG M. Hydrogen production from wood vinegar of camellia oleifera shell by Ni/M/γ-A12O3 catalyst[J]. Catal Commun,2013,39:106−114.  doi: 10.1016/j.catcom.2013.04.024

    9. [9]

      MEDRANO J A, OLIVA M, RUIZ J. Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed[J]. Energy,2011,36:2215−2224.  doi: 10.1016/j.energy.2010.03.059

    10. [10]

      XU X, JIANG E, SUN Y, LI Z. Influence of mixed supports on the steam catalytic reforming of wood vinegar[J]. Energy Fuels,2017,31(2):1678−1688.  doi: 10.1021/acs.energyfuels.6b03000

    11. [11]

      FU P, ZHANG A, LUO S, YI W, HU S, ZHANG Y. Catalytic steam reforming of biomass-derived acetic acid over two supported Ni catalysts for hydrogen-rich syngas production[J]. ACS Omega,2019,4(8):13585−13593.  doi: 10.1021/acsomega.9b01985

    12. [12]

      ZHANG A, LI Z, YI W, FU P, WANG L, LIANG C, LUO S. Study the reaction mechanism of catalytic reforming of acetic acid through the instantaneous gas production[J]. Int J Hydrogen Energy,2019,44(39):21279−21289.  doi: 10.1016/j.ijhydene.2019.06.060

    13. [13]

      LI L, JIANG B, TANG D, ZHANG Q, ZHEG Z. Hydrogen generation by acetic acid steam reforming over Ni-based catalysts derived from La1−x CexNiO3 perovskite[J]. Int J Hydrogen Energy,2018,43(14):6795−6803.  doi: 10.1016/j.ijhydene.2018.02.128

    14. [14]

      SIANG J, LEE C, WANG C. Hydrogen production from steam reforming of ethanol using a ceria-supported iridium catalyst: effect of different ceria supports[J]. Int J Hydrogen Energy,2010,35(8):3456−3462.  doi: 10.1016/j.ijhydene.2010.01.067

    15. [15]

      ZHANG B, TANG X, LI Y. Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts[J]. Catal Commun,2006,7(6):367−372.  doi: 10.1016/j.catcom.2005.12.014

    16. [16]

      HE S, MEI Z, LIU N. Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: Effect of nickel precursor[J]. Int J Hydrogen Energy,2017,42(21):14429−14438.  doi: 10.1016/j.ijhydene.2017.02.115

    17. [17]

      XIE H Q, YU Q B, YAO X. Hydrogen production via steam reforming of bio-oil model compounds over supported nickel catalysts[J]. J Energy Chem,2015,24(3):299−308.  doi: 10.1016/S2095-4956(15)60315-1

    18. [18]

      CONSTANTINOU D A, EFSTATHIOU A M. Low-temperature purification of gas streams from phenol by steam reforming over novel supported-Rh catalysts[J]. Appl Catal B: Environ,2010,96(3/4):276−289.  doi: 10.1016/j.apcatb.2010.02.007

    19. [19]

      ARTETXE M, NAHIL M A, OLAZAR M, WILLIAMSP T. Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst[J]. Fuel,2016,184:629−636.  doi: 10.1016/j.fuel.2016.07.036

    20. [20]

      WANG Yi-shuang, CHEN Ming-qiang, LlU Shao-min, YANG Zhong-lian, SHEN Chao-ping, LIU Ke. Hydrogen production via cataylic steam reforming of bio-oil model compounds over NiO-Fe2O3-loaded palygouskite[J]. J Fuel Chem Technol,2015,43(12):1470−1475.  doi: 10.3969/j.issn.0253-2409.2015.12.010

    21. [21]

      NOGUEIRA F, ASSAF P, CARVALHO H, ASSAF E. Catalytic steam reforming of acetic acid as a model compound of bio-oil[J]. Appl Catal B: Environ,2014,160(7):188−199.

    22. [22]

      HE Z, YANG M, WANG X, ZHAO Z, DUAN A. Effect of the transition metal oxide supports on hydrogen production from bio-ethanol reforming[J]. Catal Today,2012,194(1):2−8.  doi: 10.1016/j.cattod.2012.05.004

    23. [23]

      XU X, ZHANG C, LIU Y, ZHAI Y, ZHANG R, TANG X. Catalytic reforming of acetic acid as a model compound of bio-oil for hydrogen production over Ni-CeO2-MgO/olivine catalysts[J]. Environ Prog Sustainable Energy,2015,34(3):915−922.  doi: 10.1002/ep.12062

    24. [24]

      NABGAN W, ABDULLAH T A T, MAT R. Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst[J]. Int J Hydrogen Energy,2017,42(14):8975−8985.  doi: 10.1016/j.ijhydene.2016.04.176

    25. [25]

      ZHANG F, WANG M, ZHU L. A comparative research on the catalytic activity of La2O3 and γ-Al2O3 supported catalysts for acetic acid steam reforming[J]. Int J Hydrogen Energy,2017,42(6):3667−3675.  doi: 10.1016/j.ijhydene.2016.06.264

    26. [26]

      WURZLER G T, RABELO-ETO R C, MATTOS L V. Steam reforming of ethanol for hydrogen production over MgO-supported Ni-based catalysts[J]. Appl Catal A: Gen,2016,518:115−128.  doi: 10.1016/j.apcata.2015.11.020

    27. [27]

      LV Yan-an, ZHAO Xing-ling, SUO Zhang-huai, LIAO Wei-ping, JIN Ming-shan. Low-temperature steam reforming of glycerol for hydrogen production over supported nickel catalysts[J]. J Fuel Chem Technol,2015,43(6):684−691.  doi: 10.3969/j.issn.0253-2409.2015.06.007

    28. [28]

      MORAES T S, NETO R C R, RIBEIRO M C, MATTOS L V, KOURTELESIS M, LADAS S, VERYKIOS X, BELLOT NORONHA F. The study of the performance of PtNi/CeO2-nanocube catalysts for low temperature steam reforming of ethanol[J]. Catal Today,2015,242:35−49.  doi: 10.1016/j.cattod.2014.05.045

    29. [29]

      ZHANG Z M, WANG Y R, SUN K. Steam reforming of acetic acid over Ni-Ba/Al2O3 catalysts: Impacts of barium addition on coking behaviors and formation of reaction intermediates[J]. J Energy Chem,2020,43:208−219.  doi: 10.1016/j.jechem.2019.08.023

    30. [30]

      VICENTE J, MONTERO C, EREÑA J, AZKOITI M J, BILBAO J, GAYUBO A G. Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor[J]. Int J Hydrogen Energy,2014,39(24):12586−12596.  doi: 10.1016/j.ijhydene.2014.06.093

    31. [31]

      ZHANG A, LIANG C, WANG L, LI Z, YI W, FU P, WANG S. Study on the trigger mechanism and carbon behavior of catalytic reforming of wood vinegar[J]. Int J Hydrogen Energy,2020,45(29):14669−14678.  doi: 10.1016/j.ijhydene.2020.03.196

  • 加载中
    1. [1]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    5. [5]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    10. [10]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    11. [11]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    12. [12]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    13. [13]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    14. [14]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    15. [15]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    16. [16]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    17. [17]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    18. [18]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

Metrics
  • PDF Downloads(8)
  • Abstract views(2089)
  • HTML views(289)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return