Citation: Ting-ting ZHANG, Chang-song ZHOU, Meng-chang ZHOU, Hao WU, Zhen ZHANG, Hong-min YANG. Study on the synergistic heterogeneous Fenton oxidation degradation of benzene containing waste gas using Fe doped UiO-66[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(2): 220-227. doi: 10.19906/j.cnki.JFCT.2021013 shu

Study on the synergistic heterogeneous Fenton oxidation degradation of benzene containing waste gas using Fe doped UiO-66

  • Corresponding author: Chang-song ZHOU, cszhou@njnu.edu.cn
  • Received Date: 29 September 2020
    Revised Date: 9 November 2020

Figures(10)

  • The UiO-66 catalysts with different doping ratio of Fe were prepared by hydrothermal synthesis method in this study. The physicochemical properties of the catalysts were characterized by means of XRD, SEM and XPS. The benzene removal efficiency of the catalysts was investigated using a bench-scaled heterogeneous Fenton-like system device. The effects of Fe loading amount, H2O2concentration, superficial velocity and reaction temperature on benzene removal efficiency were studied. The results showed that the Fe doped UiO-66 was irregularly spherical and of high crystallinity. The highest benzene removal efficiency was obtained at 93% over the catalyst with 30% Fe loading. The EPR results proved that increasing Fe loading on UiO-66 evidently promoted the production of ·OH radicals, which promoted the degradation of benzene to a certain extent. The benzene removal efficiency decreased with the rise of temperature at higher range because H2O2 was unstable at high temperature.
  • 加载中
    1. [1]

      TANG Ji-yun, ZHU Chao, ZHANG Hong-xin. Research on molecular sieve in the treatment of volatile organic compounds[J]. Appl Energy Technol,2018,,(9):46−49.  doi: 10.3969/j.issn.1009-3230.2018.08.011

    2. [2]

      JIA Yong-qin, ZHANG Xiao-jing. Molecular sieve supported CoOx catalyst for catalytic oxidation of Benzene[J]. Environ Sci Technol,2018,41(9):28−32.

    3. [3]

      MARIA L A, VIVIAN S M, VIVIAN S M, BRASILEIRO C, POLLYANA C R. Synthesis of mixed oxide Ti/Fe2O3 as solar light-induced photocatalyst for heterogeneous photo-Fenton like process[J]. J Photochem Photobiol, A, 2021, 404: 112873.

    4. [4]

      KHAN N A, HASAN Z, JHUNG S H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review[J]. J Hazard Mater,2013,244-245:444−456.  doi: 10.1016/j.jhazmat.2012.11.011

    5. [5]

      WU J H, XIA Q B, LI Z, PI Y H. Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal-organic framework for MB degradation[J]. Appl Catal B: Environ,2017,202:653−663.  doi: 10.1016/j.apcatb.2016.09.073

    6. [6]

      MA X C, LI L Q, CHEN R F, WANG C H, LI H L, WANG S B. Heteroatom-doped nanoporous carbon derived from MOF-5 for CO2 capture[J]. Appl Surf Sci,2018,435:494−502.  doi: 10.1016/j.apsusc.2017.11.069

    7. [7]

      PAN Y, JIANG S S, XIONG W, LIU D R, LUO D. Supported CuO catalysts on metal-organic framework (Cu-UiO-66) for efficient catalytic wet peroxide oxidation of 4-chlorophenol in wastewater[J]. J Hazard Mater,2020,291:109703.

    8. [8]

      GONZALEZ-OLMOS R, MARTIN M J, GEORGI A, KOPINKE F D, OLLER L, MALATO S. Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH[J]. Appl Catal B: Environ,2012,125:51−58.  doi: 10.1016/j.apcatb.2012.05.022

    9. [9]

      LI Yin-ying Study on Fe-based metal-organic framework heterogeneous Fenton catalyst for degradation of dyes[D]. Chongqing: Southwest University, 2019.

    10. [10]

      SUN Q, LIU M, LI K Y, HAN Y T, ZUO Y, WANG J H, SONG C S, ZHANG G L, GUO X W. Controlled synthesis of mixed-valent Fe-containing metal organic framework for degradation of phenol under mild conditions[J]. Dalton Trans,2016,10:1039.

    11. [11]

      CAVKA J H, JAKOBSEN S, OLSBYE U, GUILLOU N, LAMBERTI C, BORDIGA S, LILLERUD K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J Am Chem Soc,2008,130(42):13850−1.  doi: 10.1021/ja8057953

    12. [12]

      WEN C Y, WANG C G, CHEN, L G, ZHANG X H, LIU Q Y, MA L L. Effect of hierarchical ZSM-5 zeolite support on direct transformation from syngas to aromatics over the iron-based catalyst[J]. Fuel,2019,244:492−498.  doi: 10.1016/j.fuel.2019.02.041

    13. [13]

      YU C L, DONG L F, CHEN F, LIU X Q, HUANG B C. Low-temperature SCR of NOx by NH3 over MnOx/SAPO-34 prepared by two different methods: a comparative study[J]. Environ Technol,2017,38:1030−1042.  doi: 10.1080/09593330.2016.1216170

    14. [14]

      SANDRO B, OLIVER K, ARNO T, RODERIK A. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev,2008,50:492−531.  doi: 10.1080/01614940802480122

    15. [15]

      NIE Ming-xing. Study on the Preparation of Iron-based Oxide Heterogenerous Fenton-like catalysts and Degradation of Tetracycline[D]. Hefei: University of Science and Technology of China, 2020.

    16. [16]

      GUO L S, LI J, ZENG Y, KOSOL R, TSUBAKI N. Heteroatom doped iron-based catalysts prepared by urea self-combustion method for efficient CO2 hydrogenation[J]. Fuel,2020,276:118102.

    17. [17]

      SALAZAR-AGUILAR A D, VEGA G, CASAS J A, VEGA-DÍAZ S M, QUINTANILLA A. Direct hydroxylation of phenol to dihydroxybenzenes by H2O2 and Fe-based metal-organic framework catalyst at room temperature[J]. Catalysts,2020,10(2):172.

    18. [18]

      YAMASHITA T, HAYES P. Erratum to "Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials"[J]. Appl Surf Sci,2008,254:2441−2449.  doi: 10.1016/j.apsusc.2007.09.063

    19. [19]

      GONG Z J, WEN F W, ZHAO Z W, LI B W. Combination of catalytic combustion and catalytic denitration on semi-coke with Fe2O3 and CeO2[J]. Catal Today,2018,318:59−65.

    20. [20]

      XU Y, AI X, ZHANG H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J]. J Hazard Mater,2016,309:87−96.  doi: 10.1016/j.jhazmat.2016.01.023

    21. [21]

      CHEN H, ZHANG Z L, YANG Z L, YANG Q, LI B, BAI Z Y. Heterogeneous fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS[J]. Chem Eng J,2015,273:481−489.  doi: 10.1016/j.cej.2015.03.079

    22. [22]

      WANG Y, LIU Y X, LIU Y. Elimination of nitric oxide using new Fenton process based on synergistic catalysis: Optimization and mechanism[J]. Chem Eng J,2019,372:92−98.  doi: 10.1016/j.cej.2019.04.122

    23. [23]

      XIN S S, LIU G C, MA X H, GONG J X, XIN Y J. High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism[J]. Appl Catal B: Environ, 2021, 280: 119386.

    24. [24]

      GUO R T, PAN W G, ZHANG X B, REN J X, JIN Q, XU H J, WU J. Removal of NO by using Fenton reagent solution in a lab-scale bubbling reactor[J]. Fuel,2011,90(11):3295−3298.  doi: 10.1016/j.fuel.2011.06.030

    25. [25]

      LIU Y, WANG Y. Removal of gaseous hydrogen sulfide by a Photo-Fenton wet oxidation scrubbing system[J]. Energy Fuels,2019,33(11):10812−10819.

    26. [26]

      ZHOU Chang-song. Experimental and mechanism study of elemental mercury removal from flue gas over iron-based Fenton-like catalysts[D]. Wuhan: Huazhong University of Science and Technology, 2016.

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    8. [8]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    12. [12]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    15. [15]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    16. [16]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    17. [17]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    18. [18]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    19. [19]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(13)
  • Abstract views(2245)
  • HTML views(432)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return