Citation: Hui-fang WANG, Peng LI, Jing-ru ZU, Ke-zhong LI. Catalytic effects of industrial waste alkali liquor in pressurized steam gasification of coal char[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(2): 145-150. doi: 10.19906/j.cnki.JFCT.2021010 shu

Catalytic effects of industrial waste alkali liquor in pressurized steam gasification of coal char

  • Corresponding author: Ke-zhong LI, nyyjy@enn.cn
  • Received Date: 28 October 2020
    Revised Date: 19 November 2020

Figures(7)

  • The catalytic activity of an industrial waste alkali liquor for coal gasification was identified, and the WJT coal impregnated of black liquor (BL) was gasified with steam under the temperatures 700−750 ℃ at high pressure. The effects of major process variables such as catalyst loading and temperature were investigated, which was also in comparison with Na2CO3 (SC). The results show that with an increase in the catalyst loading the gasification rate and the carbon conversion rise first and then drop, having the highest values at a 3% of Na loading and being higher than that with SC. Meanwhile, the catalytic activity increases with increasing the gasification temperature. The influence of BL addition on the BET surface area and pore volume was studied by an isothermal N2adsorption-desorption experiment. It is indicated that the BET surface area and pore volume increase at first and then decrease with an increase in the BL loading. The increase of surface area and pore volume provide more gasification active sites and thus promote the reactivity of char gasification. However, the blocking of pores in coal char caused by excess catalyst loading can result in a decrease in the surface area and pore volume and thus the declining of the gasification rate.
  • 加载中
    1. [1]

      Annual report of coal chemical industry in China - Review in 2019 and prospect (2020-2024)[R]. ASIACHEM, 2019.

    2. [2]

      HIRSCH R L, GALLAGHER J E, LESSARD R R Jr, WESSELHOFT R D. Catalytic coal gasification-an emerging technology[J]. Science,1982,215(4529):121−127.  doi: 10.1126/science.215.4529.121

    3. [3]

      NAHAS N C. Exxon catalytic coal gasification process: Fundamentals to flowsheets[J]. Fuel,1989,62:239−243.

    4. [4]

      MCKEE D W, SPIRO C L, KOSKY P G, LAMBY E J. Catalysis of coal char gasification by alkali metal salts[J]. Fuel,1983,62(2):217−220.  doi: 10.1016/0016-2361(83)90202-8

    5. [5]

      VERAA M J, BELL A T. Effect of alkali metal catalysts on gasification of coal char[J]. Fuel,1978,57(4):194−200.  doi: 10.1016/0016-2361(78)90116-3

    6. [6]

      KAPTEIJN F, PEER O, MOULIJN J A. Kinetics of the alkali carbonate catalyzed gasification of carbon: 1. CO2 gasification[J]. Fuel,1986,65(10):1371−1376.  doi: 10.1016/0016-2361(86)90107-9

    7. [7]

      TROMP P J J, KARSTEN P J A, JENKIN R G, MOULIJN J A. The thermoplasticity of coal and the effect of K2CO3 addition in relation to the reactivity of the char in gasification[J]. Fuel,1986,65(10):1450−1456.  doi: 10.1016/0016-2361(86)90122-5

    8. [8]

      YUAN X Z, FAN S M, ZHAO L, KIM H T. Investigations of both catalytic steam gasification of indonesian lanna coal and potassium catalyst recovery using K2CO3 as a catalyst[J]. Energy Fuels,2016,30(3):2492−502.  doi: 10.1021/acs.energyfuels.5b02536

    9. [9]

      YUAN X Z, FAN S M, CHOI S W, KIM H T, LEE K B. Potassium catalyst recovery process and performance evaluation of the recovered catalyst in the K2CO3-catalyzed steam gasification system[J]. Appl Energy,2017,195:850−60.  doi: 10.1016/j.apenergy.2017.03.088

    10. [10]

      WANG Y W, WANG Z Q, HUANG J J, FANG Y T. Improved catalyst recovery combined with extracting alumina from Na2CO3-catalyzed gasification ash of a high-aluminum coal char[J]. Fuel,2018,234(15):101−109.

    11. [11]

      KUANG J P, ZHOU J H, ZHOU Z J, LIU J Z, CEN K F. Catalytic mechanism of sodium compounds in black liquor during gasification of coal black liquor slurry[J]. Energy Convers Manage,2008,49(2):247−256.  doi: 10.1016/j.enconman.2007.06.032

    12. [12]

      LIN Ju, ZHANG Ji-yu, ZHONG Xue-qing. Kinetics and compensation effects of steam gasification of Fujian anthracite using black liquor as catalyst[J]. CIESC J,2009,60(4):905−911.  doi: 10.3321/j.issn:0438-1157.2009.04.014

    13. [13]

      HUANG Wen-yi, ZHANG Ji-yu, LIN Ju. Harmless treatment of alkali ash-cinders yielded in catalytic gasification for pulverized Fujian anthracite[J]. J Fuel Chem Technol,2001,29(6):537−542.  doi: 10.3969/j.issn.0253-2409.2001.06.013

    14. [14]

      VALENZUELA-CALAHORRO C, PAN Y G, BERNAITE-GARCIA A, GOMEZ-SERRANO V. Thermogravimetric study of anthracite gasification in CO2 catalyzed by black liquor[J]. Energy Fuels,1994,8(2):348−354.  doi: 10.1021/ef00044a009

    15. [15]

      ZHAN X L, ZHOU Z J, WANG F C. Catalytic effect of black liquor on the gasification reactivity of petroleum coke[J]. Appl Energy,2010,87(5):1710−1715.  doi: 10.1016/j.apenergy.2009.10.027

    16. [16]

      ZHOU Zhi-jie, XIONG Jie, ZHAN Xiu-li, YU Guang-suo. Catalysis of black liquor for petroleum coke-CO2 gasification and kinetic compensation effect[J]. CIESC J,2011,62(4):934−939.

    17. [17]

      WANG J, SAKANISHI K, SAITO I. High-yield hydrogen production by steam gasification of hypercoal (Ash-free coal extract) with potassium carbonate: Comparison with raw coal[J]. Energy Fuels,2005,19:2114−2120.  doi: 10.1021/ef040089k

    18. [18]

      WANG J, YAO Y H, CAO J Q, JIANG M Q. Enhanced catalysis of K2CO3 for steam gasification of coal char by using Ca(OH)2 in char preparation[J]. Fuel,2010,89(2):310−317.  doi: 10.1016/j.fuel.2009.09.001

    19. [19]

      ZHANG L X, KUDO S, TSUBOUCHHI N, HAYASHI, J I, OHTSUKA Y, NORINAGA K. Catalytic effects of Na and Ca from inexpensive materials on in-situ steam gasification of char from rapid pyrolysis of low rank coal in a drop-tube reactor[J]. Fuel Process Technol,2013,113:1−7.

    20. [20]

      DING L, ZHOU Z J. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J]. Fuel,2015,142:134−144.  doi: 10.1016/j.fuel.2014.11.010

    21. [21]

      YEBOAHA Y D, XU Y, SHETH A, GODAVARTY A, AGRAWAL P K. Catalytic gasification of coal using eutectic salts: identification of eutectics[J]. Carbon,2003,41(2):203−214.  doi: 10.1016/S0008-6223(02)00310-X

    22. [22]

      KAPTEIJN F, MOULIJN J A. Methanation of CO over alkali metal-carbon catalysts[J]. Chem Commun,1984,5:278−279.

    23. [23]

      MEIJER R, VAN DOORN R, KAPTEIJN F, MOULIJN J A. Methane formation in H2, CO mixtures over carbon-supported potassium carbonate[J]. J Catal,1992,134(2):525−535.  doi: 10.1016/0021-9517(92)90339-J

    24. [24]

      WANG J, JIANG M Q, YAO Y H, ZHANG Y M, CAO J Q. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane[J]. Fuel,2009,88(9):1572−1579.

    25. [25]

      CHEN Yan, ZHANG Ji-yu. Variation of specific surface area in catalytic gasification process of Fujian anracite with Na2CO3 catalyst[J]. CIESC J,2012,63(8):2443−2452.  doi: 10.3969/j.issn.0438-1157.2012.08.016

    26. [26]

      MENG Lei, ZHOU Min, WANG Fen. Progress of research on catalyst for catalytic gasification of coal[J]. Gas Heat,2010,30(4):B18−B22.

  • 加载中
    1. [1]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    8. [8]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    9. [9]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    10. [10]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    13. [13]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    14. [14]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    15. [15]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    16. [16]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(9)
  • Abstract views(2191)
  • HTML views(338)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return