不同尺寸ZIF-8对U (VI)的吸附性能

田龙 豆维新 杨玮婷 王成

引用本文: 田龙, 豆维新, 杨玮婷, 王成. 不同尺寸ZIF-8对U (VI)的吸附性能[J]. 应用化学, 2021, 38(1): 84-91. doi: 10.19894/j.issn.1000-0518.200294 shu
Citation:  TIAN Long,  DOU Wei-Xin,  YANG Wei-Ting,  WANG Cheng. Size Effect of ZIF-8 on the Adsorption of Uranium[J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 84-91. doi: 10.19894/j.issn.1000-0518.200294 shu

不同尺寸ZIF-8对U (VI)的吸附性能

    通讯作者: 豆维新,E-mail:1648214326@qq.com; 杨玮婷,E-mail:wyang@icems.kyoto-u.ac.jp; 王成,E-mail:cwang@tjut.edu.cn
  • 基金项目:

    国家重点研发计划(No.2017YFA0700104)、国家自然科学基金(No.21571170)和天津市自然科学基金(No.17JCZDJC000)资助

摘要: 以经典的金属有机骨架(MOFs)材料ZIF-8为吸附剂,研究尺寸效应对铀吸附性能的影响。通过3种方法合成不同粒径的ZIF-8,利用扫描电子显微镜(SEM)、X射线粉末衍射仪(XRD)、表面积与孔隙度分析仪等对其进行了表征,测试了相同条件下不同尺寸的ZIF-8对硝酸铀酰溶液中U (VI)吸附,分别对其吸附过程的动力学和吸附等温线进行了考察,并测试了材料的可重复利用性。结果表明,成功制备了高结晶性、高纯度的ZIF-8,产物形貌呈菱形十二面体,颗粒均匀,粒径分别为约50 nm、150 nm及2 μm;3种ZIF-8具有单一均匀的微孔结构和与粒径高度相关的比表面积;不同尺寸的ZIF-8均能快速吸附溶液中的U (VI),在室温pH=3下,在70 min左右时即可吸附初始质量浓度为200 mg/L的U (VI)溶液中90%以上U (VI);其中较小尺寸(约50 nm)的ZIF-8吸附性能最好,单位质量ZIF-8吸附U (VI)的饱和吸附量达到520.26 mg/g;ZIF-8对U的吸附动力学上符合二级动力学方程,吸附等温线符合Langmuir模型,说明ZIF-8对U (VI)的捕获属于化学单层吸附;经过4个吸附-解吸循环后,3种尺寸的ZIF-8均依然保持了70%以上的去除率。

English


    1. [1] LOVLEY D R, PHILLIPS E J P, GORBY Y A, et al. Microbial reduction of uranium[J]. Nature, 1991, 350(6317):413-416.

    2. [2] LIU Y, YUAN L, YUAN Y, et al. A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15[J]. J Radioanal Nucl Chem, 2012, 292(2):803-810.

    3. [3] YANG W, BAI Z Q, SHI W Q, et al. MOF-76:from a luminescent probe to highly efficient UVI sorption material[J]. Chem Commun, 2013, 49(88):10415-10417.

    4. [4] SAGHATCHI H, ANSARI R, MOUSAVI H Z. Highly efficient adsorptive removal of uranyl ions from aqueous solutions using dicalcium phosphate nanoparticles as a superabsorbent[J]. Nucl Eng Technol, 2018, 50(7):1112-1119.

    5. [5] WANG D, SONG J, WEN J, et al. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent[J]. Adv Energy Mater, 2018, 8(33):1802607.

    6. [6] PREETHA C R, GLADIS J M, RAO T P, et al. Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles[J]. Environ Sci Technol, 2006, 40(9):3070-3074.

    7. [7] SUN Y, SHAO D, CHEN C, et al. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environ Sci Technol, 2013, 47(17):9904-9910.

    8. [8] IVANOV A S, PARKER B F, ZHANG Z, et al. Siderophore-inspired chelator hijacks uranium from aqueous medium[J]. Nat Commun, 2019, 10(1):819.

    9. [9] SHAMSIPUR M, FASIHI J, ASHTARI K. Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators:a selective sorbent for uranyl ion[J]. Anal Chem, 2007, 79(18):7116-7123.

    10. [10] CARBONI M, ABNEY C W, LIU S, et al. Highly porous and stable metal-organic frameworks for uranium extraction[J]. Chem Sci, 2013, 4(6):2396-2402.

    11. [11] JAMES S L. Metal-organic frameworks[J]. Chem Soc Rev, 2003, 32(5):276-288.

    12. [12] FURUKAWA H, KO N, GO Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990):424.

    13. [13] MURRAY L J, DINCǍ M, LONG J R. Hydrogen storage in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5):1294-1314.

    14. [14] MA L, ABNEY C, LIN W. Enantioselective catalysis with homochiral metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5):1248-1256.

    15. [15] LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chem Rev, 2012, 112(2):869-932.

    16. [16] DENG H, GRUNDER S, CORDOVA K E, et al. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336(6084):1018.

    17. [17] ALLENDORF M D, BAUER C A, BHAKTA R K, et al. Luminescent metal organic frameworks[J]. Chem Soc Rev, 2009, 38(5):1330-1352.

    18. [18] JIANG H L, LIU B, AKITA T, et al. Au@ZIF-8:CO Oxidation over gold nanoparticles deposited to metal-organic framework[J]. J Am Chem Soc, 2009, 131(32):11302-11303.

    19. [19] LU G, HUPP J T. Metal-organic frameworks as sensors:a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases[J]. J Am Chem Soc, 2010, 132(23):7832-7833.

    20. [20] WANG C, ZHENG T, LUO R, et al. In situ growth of ZIF-8 on pan fibrous filters for highly efficient U(VI) removal[J]. ACS Appl Mater Interfaces, 2018, 10(28):24164-24171.

    21. [21] ZHENG J, LIN Z, LIN G, et al. Preparation of magnetic metal-organic framework nanocomposites for highly specific separation of histidine-rich proteins[J]. J Mater Chem B, 2015, 3(10):2185-2191.

    22. [22] YEAN S, CONG L, YAVUZ C T, et al. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate[J]. J Mater Res, 2005, 20(12):3255-3264.

    23. [23] LIU X, SUN J, XU X, et al. Adsorption and desorption of U(VI) on different-size graphene oxide[J]. Chem Eng J, 2019, 360:941-950.

    24. [24] TSAI W T, LAI C W, HSIEN K J. Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution[J]. J Colloid Interface Sci, 2003, 263(1):29-34.

    25. [25] ZHAO T, LI S H, SHEN L, et al. The sized controlled synthesis of MIL-101(Cr) with enhanced CO2 adsorption property[J]. Inorg Chem Commun, 2018, 96:47-51.

    26. [26] XIN C, ZHAN H, HUANG X, et al. Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO2 adsorption[J]. RSC Adv, 2015, 5(35):27901-27911.

    27. [27] LEE Y R, JANG M S, CHO H Y, et al. ZIF-8:a comparison of synthesis methods[J]. Chem Eng J, 2015, 271:276-280.

    28. [28] SÁNCHEZ-LAÍNEZ J, ZORNOZA B, FRIEBE S, et al. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test[J]. J Membr Sci, 2016, 515:45-53.

    29. [29] TRAN B L, CHIN H Y, CHANG B K, et al. Dye adsorption in ZIF-8:the importance of external surface area[J]. Micropor Mesopor Mater, 2019, 277:149-153.

    30. [30] LI J, WANG X, ZHAO G, et al. Metal-organic framework-based materials:superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chem Soc Rev, 2018, 47(7):2322-2356.

    31. [31] LUO B C, YUAN L Y, CHAI Z F, et al. U(VI) capture from aqueous solution by highly porous and stable MOFs:UiO-66 and its amine derivative[J]. J Radioanal Nucl Chem, 2016, 307(1):269-276.

    32. [32] LIU S, LUO M, LI J, et al. Adsorption equilibrium and kinetics of uranium onto porous azo-metal-organic frameworks[J]. J Radioanal Nucl Chem, 2016, 310(1):353-362.

    33. [33] LIU L, YANG W, GU D, et al. In situ preparation of chitosan/ZIF-8 composite beads for highly efficient removal of U(VI)[J]. Front Chem, 2019, 7(607).

    34. [34] DUTTA R K, SHAIDA M A, SINGLA K, et al. Highly efficient adsorptive removal of uranyl ions by a novel graphene oxide reduced by adenosine 5'-monophosphate (RGO-AMP)[J]. J Mater Chem A, 2019, 7(2):664-678.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  29
  • HTML全文浏览量:  8
文章相关
  • 收稿日期:  2020-09-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章