微流控芯片液滴生成与检测技术研究进展

郑杰 王洪 闫延鹏 崔建国

引用本文: 郑杰, 王洪, 闫延鹏, 崔建国. 微流控芯片液滴生成与检测技术研究进展[J]. 应用化学, 2021, 38(1): 1-10. doi: 10.19894/j.issn.1000-0518.200253 shu
Citation:  ZHENG Jie,  WANG Hong,  YAN Yan-Peng,  CUI Jian-Guo. Research Progress of Droplet Generation and Detection Technology of Microfluidic Chip[J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 1-10. doi: 10.19894/j.issn.1000-0518.200253 shu

微流控芯片液滴生成与检测技术研究进展

    通讯作者: 崔建国,E-mail:cjg998@hotmail.com
  • 基金项目:

    国家科技支撑计划项目(No.2015BAI01B14)、重庆市高等教育教学改革研究一般项目(No.173114)、重庆理工大学研究生教育优质课程项目(No.yyk2017106)和重庆市技术创新与应用示范(社会民生类)一般项目(No.cstc2018jscx-msyb0290)资助

摘要: 微流控芯片液滴技术是一种操控微小体积液体的新技术,既可实现高通量微观样本的生成及控制,也可进行独立液滴的操作。分散的微液滴单元可作为理想的微反应器,在生物医药中的药物筛选、材料筛选和高附加值微颗粒材料合成领域展现出巨大的应用潜力。液滴微流控芯片是利用流体剪切力的改变,使互不相溶的两相流体在其界面处生成稳定、有序的液滴,目前微液滴的生成方法主要有水动力法、气动法、光控法和电动法等。基于液滴的微流控系统越来越多地被应用于执行复杂的多重反应、测量和分析,可以进行超小体积和超高吞吐量的化学和生物实验。对液滴微流控系统而言,液滴的速度、大小和内容物含量会影响最终的检验结果,因此对液滴形成速率和液滴的内容物含量的实时检测至关重要,目前最常用的液滴检测方法有光学检测技术与电学传感检测技术。对两相流液滴生成机理以及现有液滴生成技术开展了讨论分析,同时对液滴检测技术进行了评述。

English


    1. [1] 魏玉瑶, 孙子乔, 任昊慧, 等. 微液滴生成方法研究进展[J]. 分析化学, 2019, 47(6):10-19.WEI Y Y, SUN Z Q, REN H H, et al. Advances in microdroplet generation methods[J]. Chinese J Anal Chem, 2019, 47(6):10-19.

    2. [2] 陈九生, 蒋稼欢. 微流控液滴技术:微液滴生成与操控[J]. 分析化学, 2012, 40(8):1293-1300.CHEN J S, JIANG J H. Microfluidic droplet technology[J]. Chinese J Anal Chem, 2012, 40(8):1293-1300.

    3. [3] THORSEN T, ROBERTS R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Phys Rev Lett, 2001, 86(18):4163-4166.

    4. [4] TAN S H, SEMIN B T, BARET J C. Microfluidic flow-focusing in AC electric fields[J]. Lab Chip, 2014, 14(6):1099-1106.

    5. [5] YANG D P, HUANG J R, ZHANG L J, et al. An unusual zinc substrate-induced self-construction route to various hierarchical architectures of hydrated tungsten oxide[J]. Chem Commun, 2010, 46(25):4556-4558.

    6. [6] PARK S Y, WU T H, CHEN Y. High-speed droplet generation on demand driven by pulse laser-induced cavitation[J]. Lab Chip, 2011, 11(6):1010.

    7. [7] GU H, MURADE C U, Duits M H G, et al. A microfluidic platform for on-demand formation and merging of microdroplets using electric control[J]. Biomicrofluidics, 2011, 5(1):11101.

    8. [8] RODRIGUEZ-RODRIGUEZ J, SEVILLA A, MANUEL G J, et al. Generation of microbubbles with applications to industry and medicine[J]. Annu Rev Fluid Mech, 2015, 47(1):405-429.

    9. [9] CHOU W L, LEE P Y, YANG C L, et al. Recent advances in applications of droplet microfluidics[J]. Micromachines, 2015, 6(9):1249-1271.

    10. [10] 成一诺, 陈子浩, 李锦帆.基于微流控的现代生物医学检测技术概述[J]. 应用化工, 2018, 47(6):1227-1231.CHENG Y N, CHEN Z H, LI J F. Overview of modern biomedical detection technology based on microfluidic[J]. Appl Chem Ind, 2018, 47(6):1227-1231.

    11. [11] MOISEEVA E V, FLETCHER A A, HARNETT C K. Thin-film electrode based droplet detection for microfluidic systems[J]. Sens Actuators B Chem, 2011, 155(1):408-414.

    12. [12] ZHU Y, FANG Q. Analytical detection techniques for droplet microfluidics-a review[J]. Anal Chim Acta, 2013, 787:24-35.

    13. [13] NIU X, ZHANG M, PENG S, et al. Real-time detection, control, and sorting of microfluidic droplets[J]. Biomicrofluidics,2007, 1(4):44101.

    14. [14] NISISAKO T, TORII T, HIGUCHI T. Droplet formation in a microchannel network[J]. Lab Chip, 2002, 2(1):24.

    15. [15] 张井志, 陈武铠, 周乃香, 等. T型微通道内液滴形成过程及长度的实验研究[J]. 浙江大学学报(工学版), 2020, 54(5):1007-1013.ZHANG J Z, CHEN W K, ZHOU N X, et al. Experiment study on formation and length of droplets in T-junction microchannels[J]. J Zhejiang Univ(Eng Sci), 2020, 54(5):1007-1013.

    16. [16] ANNA S L, BONTOUX N, STONE H A. Formation of dispersions using "flow focusing" in microchannels[J]. Appl Phys Lett, 2003, 82(3):364-366.

    17. [17] JOANICOT M, AJDARI A. Droplet control for microfluidics[J]. Appl Phys Sci, 2005, 309(5736):887-888.

    18. [18] 刘赵淼, 杨洋. 几何构型对流动聚焦生成微液滴的影响[J]. 力学学报, 2016,48(4):867-876.LIU Z M, YANG Y. Influence of geometry configurations on the microdroplets in flow focusing microfluidics[J]. Chinese J Theor Appl Mech, 2016, 48(4):867-876.

    19. [19] CRAMER C, FISCHER P, WINDHAB E J. Drop formation in a co-flowing ambient fluid[J]. Chem Eng Sci,2004, 59(15):3045-3058.

    20. [20] UTADA A S, FERNANDEZ-NIEVES A, STONE H A, et al. Dripping to jetting transitions in coflowing liquid streams[J]. Phys Rev Lett, 2007, 99(9):094502.

    21. [21] CHEN H, ZHAO Y, LI J, et al. Reactions in double emulsions by flow-controlled coalescence of encapsulated drops[J]. Lab Chip, 2011, 11(14):2312-2315.

    22. [22] 王洪, 郑杰, 闫延鹏,等. 基于T型共流聚焦法的液滴生成技术[J]. 化工进展, 2020(5):291-298. WANG H, ZHENG J, YAN Y P, et al. Droplet generation technology based on T-type cocurrent focusing method[J]. Chem Ind Eng Prog, 2020(5):291-298.

    23. [23] LEE C P, LAN T S, LAI M F. Fabrication of two-dimensional ferrofluid microdroplet lattices in a microfluidic channel[J]. J Appl Phys, 2014, 115(17):17B527.

    24. [24] CHURSKI K, MICHALSKI J, GARSTECKI P. Droplet on demand system utilizing a computer controlled microvalve integrated into a stiff polymeric microfluidic device[J]. Lab Chip, 2010, 10(4):512-518.

    25. [25] NGUYEN N T, TING T H, YAP Y F, et al. Thermally mediated droplet formation in microchannels[J]. Appl Phys Lett, 2007, 91(8):s10404.

    26. [26] BAROUD C N, DELVILLE J P, GALLAIRE F, et al. Thermocapillary valve for droplet production and sorting[J]. Phys Rev E:Stat, Nonlinear, Soft Matter Phys, 2007,75(4):046302.

    27. [27] HAO G, MICHAEL H G D, FRIEDER M. A hybrid microfluidic chip with electrowetting functionality using ultraviolet(UV)-curable polymer[J]. Lab Chip, 2010, 10(12):1550-1556.

    28. [28] LINK D R, ERWAN GRASLAND-MONGRAIN, DURI A, et al. Electric control of droplets in microfluidic devices[J]. Angew Chem, 2010, 45(16):2556-2560.

    29. [29] LIU J, TAN S H, YAP Y F, et al. Numerical and experimental investigations of the formation process of ferrofluid droplets[J]. Microfluid Nanofluid, 2011, 11(2):177-187.

    30. [30] TAN S H, NGUYEN N T, YOBAS L,et al. Formation and manipulation of ferrofluid droplets at a microfluidic T-junction[J]. J Micromech Microeng, 2010, 20(4):045004.

    31. [31] ZENG S, LI B, SU X, et al. Microvalve-actuated precise control of individual droplets in microfluidic devices[J]. Lab Chip, 2009, 9(10):1340-1343.

    32. [32] CASTRO-HERNANDEZ E, GARCIA-SANCHEZ P, TAN S H, et al. Breakup length of AC electrified jets in a microfluidic flowfocusing junction[J]. Microfluid Nanofluid, 2015, 19(4):787-794.

    33. [33] SRIVASTAVA N, BURNS M A. Electronic drop sensing in microfluidic devices:automated operation of a nanoliter viscometer[J]. Lab Chip, 2006, 6(6):744-751.

    34. [34] HUEBNER A, SRISA-ART M, HOLT D. Quantitative detection of protein expression in single cells using droplet microfluidics[J]. Chem Comm, 2007(12):1218-1220.

    35. [35] CAHILL B P, LAND R, NACKE T, et al. Contactless sensing of the conductivity of aqueous droplets in segmented flow[J]. Sens Actuators B, 2011, 159(1):286-293.

    36. [36] TAO D, CÁTIA B. Capacitance variation induced by microfluidic two-phase flow across insulated interdigital electrodes in lab-on-chip devices[J]. Sensor, 2015, 15:2694-2708.

    37. [37] ZHAO Y, XU Z, PARHIZKAR M, et al. Magnetic liquid marbles, their manipulation and application in optical probing[J]. Microfluid Nanofluid, 2012, 13(4):555-564.

    38. [38] NGUYEN N T, LASSEMONO S, CHOLLET F A. Optical detection for droplet size control in microfluidic droplet-based analysis systems[J]. Sens Actuators B Chem, 2006, 117(2):431-436.

    39. [39] JIANG G F, ATTIYA S, OCVIRK G, et al. Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis[J]. Biosens Bioelectron, 2000, 14(10/11):861-869.

    40. [40] BASU A S. Droplet morphometry and velocimetry (DMV):a video processing software for time-resolved, label-free tracking of droplet parameters[J]. Lab Chip, 2013, 13(10):1892-1901.

    41. [41] 陈海秀, 成顶, 胡祯林. 图像分析在液滴检测技术中的应用[J]. 传感器与微系统, 2016, 35(4):157-160.CHEN H X, CHENG D, HU Z L. Application of image analysis in liquid droplet detection technology[J]. Transd Microsys Technol, 2016, 35(4):157-160.

    42. [42] 李智磊, 李静岚, 陈缵光, 等. 微流控芯片技术在药物分析领域的研究进展[J]. 中国药房,2019, 30(16):2279-2284.LI Z L, LI J L, CHEN Z G, et al. Research progress of microfluidic chip technology in drug analysis[J]. J China Pharm, 2019, 30(16):2279-2284.

    43. [43] WANG F, BURNS M A. Multiphase bioreaction microsystem with automated on chip droplet operation[J]. Lab Chip, 2010, 10:1308-1315.

    44. [44] JORG S, GRODRIAN A, ROBERT R, et al. Online optical detection of food contaminants in microdroplets[J]. Eng Life Sci, 2009, 9(5):391-397.

    45. [45] UWE P, DIETER F, MARKUS S, et al. Testing miniaturized electrodes for impedance measurements within the β-dispersion-a practical approach[J]. J Electr Bioimp, 2010, 1:41-55.

    46. [46] 金亚, 罗国安. 微流控芯片中超微电极的制作及其在芯片-电化学检测中的应用[J]. 高等学校化学学报, 2003, 24(7):1180-1184.JIN Y, LUO G A. Fabrication of the microfluidic chips with integrated ultra-micro electrodes and its application in on-chip electrochemical detection[J]. J Chem Chinese Univ, 2003, 24(7):1180-1184.

    47. [47] 杨文栋. 微流控芯片中液滴的阻抗检测研究[D]. 大连:大连理工大学, 2013.YANG W D. Impedance detection of droplets in microfluidic chip[D]. Dalian:Dalian University of Technology, 2013.

    48. [48] LUO C, YANG X, FU Q, et al. Picoliter-volume aqueous droplets in oil:electrochemical detection and yeast cell electroporation[J]. Electrophoresis, 2006, 27(10):1977-1983.

    49. [49] ELBUKEN C, GLAWDEL T, CHAN D, et al. Detection of microdroplet size and speed using capacitive sensors[J]. Sens Actuator A, 2011, 171(2):55-62.

    50. [50] DEMORI M, FERRARI V, POESIO P, et al. A microfluidic capacitance sensor for fluid discrimination and characterization[J]. Sens Actuator A, 2011, 172(1):212-219.

    51. [51] HU X, LIN X, HE Q, et al. Electrochemical detection of droplet contents in polystyrene microfluidic chip with integrated micro film electrodes[J]. J Electroanal Chem, 2014, 726(24):7-14.

    52. [52] ISGOR P K, MARCALI M, KESER M, et al. Microfluidic droplet content detection using integrated capacitive sensors[J]. Sens Actuators B, 2015, 210:669-675.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  38
  • HTML全文浏览量:  14
文章相关
  • 收稿日期:  2020-08-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章