溶剂诱导的聚乳酸/聚乳酸衍生物共结晶行为

曹友錋 庞烜 项盛 王天昶 冯立栋 边新超 李杲 陈学思

引用本文: 曹友錋, 庞烜, 项盛, 王天昶, 冯立栋, 边新超, 李杲, 陈学思. 溶剂诱导的聚乳酸/聚乳酸衍生物共结晶行为[J]. 应用化学, 2021, 38(1): 60-68. doi: 10.19894/j.issn.1000-0518.200236 shu
Citation:  CAO You-Peng,  PANG Xuan,  XIANG Sheng,  WANG Tian-Chang,  FENG Li-Dong,  BIAN Xin-Chao,  LI Gao,  CHEN Xue-Si. Solution-Induced Co-crystallization in Poly(lactic acid)/Substituted Poly(lactic acid) Blends[J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 60-68. doi: 10.19894/j.issn.1000-0518.200236 shu

溶剂诱导的聚乳酸/聚乳酸衍生物共结晶行为

    通讯作者: 李杲,E-mail:ligao@ciac.ac.cn
  • 基金项目:

    国家自然科学基金(Nos.51973220,51773194,51973219)和国家重点研发计划(No.2016YFB0302500)项目资助

摘要: 通过溶液浇铸法制备不同组分的左旋聚乳酸(PLLA)和聚(L-2-羟基-3-甲基丁酸)(PL-2H3MB)共混物。运用差示扫描量热仪(DSC)、偏光显微镜(POM)、广角X射线衍射(WAXD)和热重分析仪(TGA)分析共混物的结晶、熔融行为和热稳定性。通过观察到DSC加热曲线中新的熔融峰判断PLLA和PL-2H3MB共晶的形成,共晶显著提高PLLA起始结晶温度和WAXD曲线中特征衍射峰的变化,证实了溶液浇铸共混物中的共结晶现象。同时,共混物中PL-2H3MB和PLLA还表现出优于单组分PLLA和PL-2H3MB的热稳定性。PLLA和PL-2H3MB的共结晶行为可能为调控PLLA的热稳定性、力学性能以及降解性能提供了一种新的潜在方法。

English


    1. [1] HAMAD K, KASEEM M, AYYOOB M, et al. Polylactic acid blends:the future of green, light and tough[J]. Prog Polym Sci, 2018, 85:83-127.

    2. [2] PANG X, ZHUANG X, TANG Z, et al. Polylactic acid (PLA):research, development and industrialization[J]. Biotechnol J, 2010, 5(11):1125-1136.

    3. [3] BORDES P, POLLET E, AVÉROUS L. Nano-biocomposites:biodegradable polyester/nanoclay systems[J]. Prog Polym Sci, 2009, 34(2):125-155.

    4. [4] VASANTHAN N, GEZER H. Thermally induced crystallization and enzymatic degradation studies of poly(L-lactic acid) films[J]. J Appl Polym Sci, 2013, 127(6):4395-4401.

    5. [5] CHEN Z, ZHANG S, WU F, et al. Motion mode of poly(lactic acid) chains in film during strain-induced crystallization[J]. J Appl Polym Sci, 2016, 133(6):1-10.

    6. [6] TU C, JIANG S, LI H, et al. Origin of epitaxial cold crystallization of poly(L-lactic acid) on highly oriented polyethylene substrate[J]. Macromolecules, 2013, 46(13):5215-5222.

    7. [7] SAEIDLOU S, HUNEAULT M A, LI H, et al. Poly(lactic acid) crystallization[J]. Prog Polym Sci, 2012, 37(12):1657-1677.

    8. [8] WANG Z, XIA S, CHEN H, et al. Effects of poly(ethylene glycol) grafted silica nanoparticles on crystallization behavior of poly(D-lactide)[J]. Polym Int, 2015, 64(8):1066-1071.

    9. [9] 程海波, 陈学思, 肖海华, 等. 多臂聚乳酸对线型聚乳酸结晶的促进作用[J]. 应用化学, 2010, 27(7):754-758.CHENG H B, CHEN X S, XIAO H H. Promotion of crystallization in linear polylactide by multiarm-polylactide[J]. Chinese J Appl Chem, 2010, 27(7):754-758.

    10. [10] NING Z, JIANG N, GAN Z.Four-armed PCL-b-PDLA diblock copolymer:1.synthesis, crystallization and degradation[J]. Polym Degrad Stab, 2014, 107:120-128.

    11. [11] TSUJI H. Poly(lactic acid) stereocomplexes:Adecade of progress[J]. Adv Drug Deliv Rev, 2016, 107:97-135.

    12. [12] SIAKENG R, JAWAID M, ARIFFIN H, et al. Natural fiber reinforced polylactic acid composites:a review[J]. Polym Compos, 2018, 40(2):446-463.

    13. [13] BALAKRISHNAN H, HASSAN A, IMRAN M. Toughening of polylactic acid nanocomposites:a short review[J]. Polym Plast Technol Eng, 2012, 51(2):175-192.

    14. [14] TSUJI H, OKUMURA A. Stereocomplex formation between enantiomeric substituted poly(lactide)s:blends of poly[(S)-2-hydroxybutyrate] and poly[(R)-2-hydroxybutyrate] [J]. Macromolecules, 2009, 42(19):7263-7266.

    15. [15] TSUJI H, OSANAI K, ARAKAWA Y. Stereocomplex crystallization between L- and D-configured staggered asymmetric random copolymers based on 2-hydroxyalkanoic acids[J]. Cryst Growth Des, 2018, 18(10):6009-6019.

    16. [16] TSUJI H, SOBUE T. Stereocomplex crystallization and homo-crystallization of enantiomeric substituted poly(lactic acid)s, poly(2-hydroxy-3-methylbutanoic acid)s[J]. Polymer, 2015, 69:186-192.

    17. [17] ZHOU D, HUANG S, SUN J, et al. Unique fractional crystallization of poly(L-lactide)/poly(L-2-hydroxyl-3-methylbutanoic acid) blend[J]. Macromolecules, 2017, 50(12):4707-4714.

    18. [18] TSUJI H, HAYAKAWA T. Hetero-stereocomplex formation between substituted poly(lactic acid)s with linear and branched side chains, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid)[J]. Polymer, 2014, 55(3):721-726.

    19. [19] TSUJI H, HAYAKAWA T. Heterostereocomplex- and homocrystallization and thermal properties and degradation of substituted poly(lactic acid)s, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid)[J]. Macromol Chem Phys, 2016, 217(22):2483-2493.

    20. [20] TSUJI H, HOSOKAWA M, SAKAMOTO Y. Ternary stereocomplex crystallization of poly(L-2-hydroxybutanoic acid), poly(D-2-hydroxybutanoic acid), and poly(D-lactic acid) from the melt[J]. Polymer, 2013, 54(8):2190-2198.

    21. [21] TSUJI H, SOBUE T. Stereocomplexation of quaternary or ternary monomer units and dual stereocomplexation in enantiomeric binary and quaternary polymer blends of poly(2-hydroxybutanoic acid)s, poly(2-hydroxybutanoic acid-co-lactic acid)s, and poly(lactic acid)s[J]. RSC Adv, 2015, 5(101):83331-83342.

    22. [22] TSUJI H, TAWARA T. Quaternary stereocomplex formation of substituted poly(lactic acid)s, L- and D-configured poly(2-hydroxybutanoic acid)s and L- and D-configured poly(2-hydroxy-3-methylbutanoic acid)s[J]. Polymer, 2015, 68:57-64.

    23. [23] TSUJI H, HOSOKAWA M, SAKAMOTO Y. Ternary stereocomplex formation of one L-configured and two D-configured optically active polyesters, poly(L-2-hydroxybutanoic acid), poly(D-2-hydroxybutanoic acid), and poly(D-lactic acid)[J]. ACS Macro Lett, 2012, 1(6):687-691.

    24. [24] TSUJI H, NODA S, KIMURA T, et al. Configurational molecular glue:one optically active polymer attracts two oppositely configured optically active polymers[J]. Sci Rep, 2017, 7:45170.

    25. [25] TSUJI H, MASAKI N, ARAKAWA Y, et al. Ternary stereocomplex and hetero-stereocomplex crystallizability of substituted and unsubstituted poly(lactic acid)s[J]. Cryst Growth Des, 2018, 18(1):521-530.

    26. [26] ZHU M, PAN S, WANG Y,et al. Unravelling the correlation between charge mobility and cocrystallization in rod-rod block copolymers for high-performance field-effect transistors[J]. Angew Chemie Int Ed, 2018, 130(28):8780-8784.

    27. [27] DATTA J, NANDI A K. Cocrystallization of poly(vinylidene fluoride) and vinylidene effect of chain structure and crystallization conditions[J]. Polymer, 1994, 35(22):4804-4812.

    28. [28] MARUBAYASHI H, NOJIMA S. Crystallization and solid-state structure of poly(L-2-hydroxy-3-methylbutanoic acid)[J]. Macromolecules, 2016, 49(15):5538-5547.

    29. [29] SATO S, GONDO D, WADA T, et al. Effects of various liquid organic solvents on solvent-induced crystallization of amorphous poly(lactic acid) film[J]. J Appl Polym Sci, 2012, 129(3):1607-1617.

    30. [30] OUYANG H, LEE W, OUYANGW, et al. Solvent-induced crystallization in poly(ethylene terephthalate) during mass transport:mechanism and boundary condition[J]. Macromolecules, 2004, 37(20):7719-7723.

    31. [31] TRAN H T, MATSUSAKI M, AKASHI, M, et al. Enhanced thermal stability of polylactide by terminal conjugation groups[J]. J Electron Mater, 2016, 45(5):2388-2394.

    32. [32] FENG L, FENG S, BIAN X, et al. Pyrolysis mechanism of poly(lactic acid) for giving lactide under the catalysis of tin[J]. Polym Degrad Stab, 2018, 157:212-223.

    33. [33] TSUJI H, FUKUI I. Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending[J]. Polymer, 2003, 44(10):2891-2896.

    34. [34] YAN C, JIANG Y, HOU D, et al. High-efficient crystallization promotion and melt reinforcement effect of diblock PDLA-b-PLLA copolymer on PLLA[J]. Polymer, 2020, 186, 122021.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  30
  • HTML全文浏览量:  2
文章相关
  • 收稿日期:  2020-08-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章