Recent Advances in Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane
- Corresponding author: Ya-Kun SONG, songyakunly@163.com Xin-Wen GUO, guoxw@dlut..edu.cn
Citation:
Jun-Hui LIU, Xu-Ming GUO, Ya-Kun SONG, Xin-Wen GUO. Recent Advances in Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane[J]. Chinese Journal of Applied Chemistry,
;2021, 38(2): 157-169.
doi:
10.19894/j.issn.1000-0518.200229
SARTBAEVA A, KUZNETSOV V L, WELLS S A. Hydrogen nexus in a sustainable energy future[J]. Energy Environ Sci, 2008,1(1):79-85. doi: 10.1039/b810104n
SCHAPBACH L, ZUTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001,414(6861):353-358. doi: 10.1038/35104634
ZHAN W W, ZHU Q L, XU Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts[J]. ACS Catal, 2016,6(10):6892-6905. doi: 10.1021/acscatal.6b02209
LU Z, SCHWEIGHAUSER L, HAUSMANN H. Metal-free ammonia-borane dehydrogenation catalyzed by a bis(borane) Lewis acid[J]. Angew Chem Int Ed, 2015,54(51):15556-15559. doi: 10.1002/anie.201508360
YAO Q L, DING Y Y, LU Z H. Noble-metal-free nanocatalysts for hydrogen generation from boron- and nitrogen-based hydrides[J]. Inorg Chem Front, 2020,7:3837-3874. doi: 10.1039/D0QI00766H
LI Y, DENG Y Z, YU J L. Research progress in hydrogen production from decomposition of ammonia borane and its regeneration[J]. Chem Ind Eng Prog, 2019,38(12):5330-5338.
SHRESTHA R, DIYABALANAGE H, SEMELSBERGER T. Catalytic dehydrogenation of ammonia borane in non-aqueous medium[J]. Int J Hydrogen Energy, 2009,34(6):2616-2621. doi: 10.1016/j.ijhydene.2009.01.014
CALISKAN S, ZAHMAKIRAN M, OZKAR S. Zeolite confined rhodium(0) nanoclusters as highly active, reusable, and long-lived catalyst in the methanolysis of ammonia-borane[J]. Appl Catal B, 2010,93(3/4):387-394.
YAMADA Y, YANO K, XU Q. Cu/Co3O4 nanoparticles as catalysts for hydrogen evolution from ammonia borane by hydrolysis[J]. J Phys Chem C, 2010,114:16456-16462. doi: 10.1021/jp104291s
XU Q, CHANDRA M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. J Power Sources, 2006,163(1):364-370. doi: 10.1016/j.jpowsour.2006.09.043
CHANDRA M, XU Q. A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia-borane[J]. J Power Sources, 2006,156(2):190-194. doi: 10.1016/j.jpowsour.2005.05.043
CHANDRA M, XU Q. Room Temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J]. J Power Sources, 2007,168(1):135-142. doi: 10.1016/j.jpowsour.2007.03.015
LI N P. Ru-based catalysts for catalytic hydrogen production ammonia-borane hydrolysis[D]. 2019, Guilin: Guilin University of Electronic Science and Technology.
ZHOU Q X, YANG H X, XU C X. Nanoporous Ru as highly efficient catalyst for hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016,41(30):12714-12721. doi: 10.1016/j.ijhydene.2016.05.128
AKBAYRAK S, TONBUL Y, ZKAR S. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Dalton Trans, 2016,45(27):10969-10978. doi: 10.1039/C6DT01117A
DU C, AO Q, CAO N. Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2015,40(18):6180-6187. doi: 10.1016/j.ijhydene.2015.03.070
ZHONG F Y, WANG Q, XU C L. Catalytically active rhodium nanoparticles stabilized by nitrogen doped carbon for the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2018,43(49):22273-22280. doi: 10.1016/j.ijhydene.2018.10.064
AKBAYRAK, GENÇTVRK, MORKAN. Rhodium(0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. RSC Adv, 2014,4(26):13742-13748. doi: 10.1039/C4RA00469H
KARAHAN S, ZAHMAKIRAN M, OZKAR S. A facile one-step synthesis of polymer supported rhodium nanoparticles in organic medium and their catalytic performance in the dehydrogenation of ammonia-borane[J]. Chem Commun, 2012,48(8):1180-1182. doi: 10.1039/C1CC15864C
TONBUL Y, AKBAYRAK S, OZKAR S. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane[J]. J Colloid Interface Sci, 2019,553:581-587. doi: 10.1016/j.jcis.2019.06.038
CHEN J M, LU Z H, WANG Y Q. Magnetically recyclable Ag/SiO2-CoFe2O4 nanocomposite as a highly active and reusable catalyst for H2 production[J]. Int J Hydrogen Energy, 2015,40(14):4777-4785. doi: 10.1016/j.ijhydene.2015.02.054
XU P, LU W W, ZHANG J J. Efficient hydrolysis of ammonia borane for hydrogen evolution catalyzed by plasmonic Ag@Pd core-shell nanocubes[J]. ACS Sustainable Chem Eng, 2020,8(33):12366-12377. doi: 10.1021/acssuschemeng.0c02276
AIJAZ A, KARKAMKAR A, CHOI Y. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach[J]. J Am Chem Soc, 2012,134(34):13926-13929. doi: 10.1021/ja3043905
CHEN W Y, JI J, DUAN X Z. Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane[J]. Chem Commun, 2014,50(17):2142-2144. doi: 10.1039/c3cc48027e
TONBUL Y, AKBAYRAK S, ZKAR S. Palladium(0) nanoparticles supported on ceria: highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016,41(26):11154-11162. doi: 10.1016/j.ijhydene.2016.04.058
AKBAYRAK S, KAYA M, VOLKAN M. Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: a highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane[J]. Appl Catal B, 2014,147:387-393. doi: 10.1016/j.apcatb.2013.09.023
XI P X, CHEN F, XIE G Q. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Nanoscale, 2012,4(18):5597-5601. doi: 10.1039/c2nr31010d
HU H, XIN J H, HU H. Synthesis and stabilization of metal nanocatalysts for reduction reactions-a review[J]. J Mater Chem A, 2015,3:11157-11182. doi: 10.1039/C5TA00753D
JIANG X, XIONG Y X, WANG Y F. Treelike two-level PdxAgy nanocrystals tailored for bifunctional fuel cell electrocatalysis[J]. J Mater Chem A, 2019,7:5248-5257. doi: 10.1039/C8TA11538A
ZHANG N, SHAO Q, XIAO X H. Advanced catalysts derived from composition-segregated platinum-nickel nanostructures: new opportunities and challenges[J]. Adv Funct Mater, 2019,29(13):1808161-1080188. doi: 10.1002/adfm.201808161
FANG H, YANG J H, WEN M. Nanoalloy materials for chemical catalysis[J]. Adv Mater, 2018,30(17):1705698-1705707. doi: 10.1002/adma.201705698
LI S, ZHOU Y T, KANG X. A Simple and effective principle for a rational design of heterogeneous catalysts for dehydrogenation of formic acid[J]. Adv Mater, 2019,31:1806781-1806787. doi: 10.1002/adma.201806781
YAO K S, ZHAO C S, WANG N. An aqueous synthesis of porous PtPd nanoparticles with reversed bimetallic structures for highly efficient hydrogen generation from ammonia borane hydrolysis[J]. Nanoscale, 2020,12(2):638-647. doi: 10.1039/C9NR07144J
RAKAP M. PVP-stabilized Ru-Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Alloys Comp, 2015,649:1025-1030. doi: 10.1016/j.jallcom.2015.07.249
RAKAP M. Hydrogen generation from hydrolysis of ammonia borane in the presence of highly efficient poly(n-vinyl-2-pyrrolidone)-protected platinum-ruthenium nanoparticles[J]. Appl Catal A, 2014,478:15-20. doi: 10.1016/j.apcata.2014.03.022
RAKAP M. The highest catalytic activity in the hydrolysis of ammonia borane by poly(n-vinyl-2-pyrrolidone)-protected palladium-rhodium nanoparticles for hydrogen generation[J]. Appl Catal B, 2015,163:129-134. doi: 10.1016/j.apcatb.2014.07.050
WANG C L, TUNINETTI J, WANG Z. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: high efficiency, mechanism, and controlled hydrogen release[J]. J Am Chem Soc, 2017,139(33):11610-11615. doi: 10.1021/jacs.7b06859
METIN O, OZKAR S. Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using water-soluble polymer-stabilized cobalt(0) nanoclusters catalyst[J]. Energy Fuels, 2009,23:3517-3526. doi: 10.1021/ef900171t
RAKAP M, ZKAR S. Hydroxyapatite-supported cobalt(0) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane[J]. Catal Today, 2005,98(1):17-25.
YAO Q, LU Z H, ZHANG Z J. One-Pot Synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane[J]. Sci Rep, 2014,4:7597-7604.
LI J, ZHU Q L, XU Q. Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal-organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation[J]. Catal Sci Technol, 2015,5:525-530. doi: 10.1039/C4CY01049C
SINGH A, XU Q. Synergistic catalysis over Bimetallic alloy nanoparticles[J]. ChemCatChem, 2013,5(3):652-676. doi: 10.1002/cctc.201200591
XU M, HUAI X L, ZHANG H. Highly dispersed CuCo nanoparticles supported on reduced graphene oxide as high-activity catalysts for hydrogen evolution from ammonia borane hydrolysis[J]. J Nanopart Res, 2018,20(12):329-341. doi: 10.1007/s11051-018-4429-6
WANG H A, ZHOU L M, HAN M. CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane[J]. J Alloys Compd, 2015,651:382-388. doi: 10.1016/j.jallcom.2015.08.139
ZHENG H C, FENG K, SHANG Y P. Cube-like CuCoO nanostructures on reduced graphene oxide for H2 Generation from ammonia borane[J]. Inorg Chem Front, 2018,5:1180-1187. doi: 10.1039/C8QI00183A
FENG K, ZHONG J, ZHAO B H. CuxCo1-xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia-borane[J]. Angew Chem Int Ed, 2016,55:1-6. doi: 10.1002/anie.201510990
YANG Y W, ZHANG F, WANG H L. Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation[J]. J Nanomater, 2014,2014:1-9.
WANG Q T, ZHANG Z, LIU J. Bimetallic non-noble CoNi nanoparticles monodispersed on multiwall carbon nanotubes: highly efficient hydrolysis of ammonia borane[J]. Mater Chem Phys, 2017,204:58-61.
FENG W, LAN Y, NAN C. In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane[J]. Int J Hydrogen Energy, 2014,39(7):3371-3380. doi: 10.1016/j.ijhydene.2013.12.113
YEN H, SEO Y, KALIAGUINE S. Role of metal-support interactions, particle size, and metal-metal synergy in CuNi nanocatalysts for H2 generation[J]. ACS Catal, 2015,5(9):5505-5511. doi: 10.1021/acscatal.5b00869
LU Z H, LI J P, ZHU A L. Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2013,38(13):5330-5337. doi: 10.1016/j.ijhydene.2013.02.076
LIANG Z J, XIAO X Z, YU X Y. Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane[J]. J Alloys Comp, 2018,741:501-508. doi: 10.1016/j.jallcom.2017.12.151
LIAO J Y, FENG Y F, LIN W M. CuO-NiO/Co3O4 hybrid nanoplates as highly active catalyst for ammonia borane hydrolysis[J]. Int J Hydrogen Energy, 2020,45(15):8168-8176. doi: 10.1016/j.ijhydene.2020.01.155
YAO Q L, YANG K, HONG X L. Base-promoted hydrolytic dehydrogenation of ammonia borane catalyzed by noble-metal-free nanoparticles[J]. Catal Sci Technol, 2018,8(3):870-877. doi: 10.1039/C7CY02365K
QI X H, LI X C, CHEN B. Highly active nanoreactors: patchlike or thick Ni coating on Pt nanoparticles based on confined catalysis[J]. ACS Appl Mater Interfaces, 2016,8:1922-1928. doi: 10.1021/acsami.5b10083
LI Z, HE T, MATSUMURA D. Atomically dispersed Pt on the surface of Ni particles: synthesis and catalytic function in hydrogen generation from aqueous ammonia-borane[J]. ACS Catal, 2017,7:6762-6769. doi: 10.1021/acscatal.7b01790
MORI K, MIYAWAKI K, YAMASHITA H. Ru and Ru-Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia-borane[J]. ACS Catal, 2016,6(5):3128-3135. doi: 10.1021/acscatal.6b00715
CAO N, SU J, LUO W. Hydrolytic dehydrogenation of ammonia borane and methylamine borane catalyzed by graphene supported Ru@Ni core-shell nanoparticles[J]. Int J Hydrogen Energy, 2014,39(1):426-435. doi: 10.1016/j.ijhydene.2013.10.059
CHEN Y Z, XU Q, YU S H. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis[J]. Small, 2014,11(1):71-76.
QU X, YU Z, LI Z. CoRh nanoparticles supported on ZIF-67 as highly efficient catalysts for hydrolytic dehydrogenation of ammonia boranes for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2017,42(51):30037-30043. doi: 10.1016/j.ijhydene.2017.10.040
CIFTCI N, METIN O. Monodisperse nickel-palladium alloy nanoparticles supported on reduced graphene oxide as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy, 2014,39:18863-18870. doi: 10.1016/j.ijhydene.2014.09.060
LI X J, ZENG C M, FAN G Y. Magnetic RuCo nanoparticles supported on two-dimensional titanium carbide as highly active catalysts for the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2015,40(30):9217-9224. doi: 10.1016/j.ijhydene.2015.05.168
ZHOU X, MENG X F, WANG J M. Boron nitride supported NiCoP nanoparticles as noble metal-free catalyst for highly efficient hydrogen generation from ammonia borane[J]. Int J Hydrogen Energy, 2019,44(10):4764-4770. doi: 10.1016/j.ijhydene.2019.01.026
FENG X, ZHAO Y H, LIU D K. Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst[J]. Int J Hydrogen Energy, 2018,43:17112-17120. doi: 10.1016/j.ijhydene.2018.07.055
QU X P, JIANG R, LI Q. Hydrolysis of ammonia borane catalyzed by NiCoP/OPC-300 nanocatalysts: high selectivity, efficiency and mechanism[J]. Green Chem, 2019,21:850-860. doi: 10.1039/C8GC03536A
LIN Y X, YANG L, JIANG H L. Boosted reactivity of ammonia borane dehydrogenation over Ni/Ni2P heterostructure[J]. J Phys Chem Lett, 2019,10:1048-1054. doi: 10.1021/acs.jpclett.9b00122
FU Z G, XU Y, CHAN L F. Highly efficient hydrolysis of ammonia borane by anion (-OH, F-, Cl-)-tuned interactions between reactant molecules and CoP nanoparticles[J]. Chem Commun, 2017,53(4):705-708. doi: 10.1039/C6CC08120G
PENG C, KANG L, CAO S. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane[J]. Angew Chem Int Ed, 2015,127:15951-15955. doi: 10.1002/ange.201508113
Hou C C, Li Q, Wang C J. Ternary Ni-Co-P nanoparticles and their hybrids with graphene as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane[J]. Energy Environ Sci, 2017,10(8):1770-1776. doi: 10.1039/C7EE01553D
LI W A, NIE X W, JIANG X. ZrO2 Support imparts superior activity and stability of Co Catalysts for CO2 methanation[J]. Appl Catal B, 2018,220:397-408. doi: 10.1016/j.apcatb.2017.08.048
WAN H J, WU B S, XIANG H W. Fischer-tropsch synthesis: influence of support incorporation manner on metal dispersion, metal-support interaction, and activities of iron catalysts[J]. ACS Catal, 2012,2(9):1877-1883. doi: 10.1021/cs200584s
AKBAYRAK S, TONBU Y, ÖZKAR S. Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane[J]. Appl Catal B, 2016,198:162-170. doi: 10.1016/j.apcatb.2016.05.061
ZAHMAKIRAN M, AYVAL T, AKBAYRAK S. Zeolite framework stabilized nickel(0) nanoparticles: active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride[J]. Catal Today, 2011,170(1):76-84. doi: 10.1016/j.cattod.2010.09.022
GIL-SAN-MILLAN R, GRAU-ATIENZA A, JOHNSON D T. Improving hydrogen production from the hydrolysis of ammonia borane by using multifunctional catalysts[J]. Int J Hydrogen Energy, 2018,43(36):17100-17111. doi: 10.1016/j.ijhydene.2018.06.137
ZHONG W D, TIAN X K, YANG C. Active 3D Pd/graphene aerogel catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J]. Int J Hydrogen Energy, 2016,41:15225-15235. doi: 10.1016/j.ijhydene.2016.06.263
ZHAO B H, FENG K, WANG Y. PtxNi10-xO Nanoparticles supported on N-doped graphene oxide with a synergetic effect for highly efficient hydrolysis of ammonia borane[J]. Catal Sci Technol, 2017,7:5135-5142. doi: 10.1039/C7CY01742A
YAO Q L, LU Z H, YANG Y W. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Nano Res, 2018,11(8):4412-4422. doi: 10.1007/s12274-018-2031-y
YAO Q L, LU Z H, HUANG W. High Pt-like activity of the Ni-Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. J Mater Chem A, 2016,4:8579-8583. doi: 10.1039/C6TA02004F
KANG K, GU X J, GUO L L. Efficient catalytic hydrolytic dehydrogenation of ammonia borane over surfactant-free bimetallic nanoparticles immobilized on amine-functionalized carbon nanotubes[J]. Int J Hydrogen Energy, 2015,40:12315-12324. doi: 10.1016/j.ijhydene.2015.07.081
GUO L L, GU X J, KANG K. Porous nitrogen-doped carbon-immobilized bimetallic nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Mater Chem A, 2015,3:22807-22815. doi: 10.1039/C5TA05487G
WANG W, LU Z H, LUO Y. Mesoporous carbon nitride supported Pd and Pd-Ni nanoparticles as highly efficient catalyst for catalytic hydrolysis of NH3BH3[J]. ChemCatChem, 2018,10(7):1620-1626. doi: 10.1002/cctc.201701989
CHENG N Y, REN L, XU X. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts[J]. Adv Energy Mater, 2018,8(25):1801257-1801277. doi: 10.1002/aenm.201801257
DANG S, ZHU Q L, XU Q. Nanomaterials derived from metal-organic frameworks[J]. Nat Rev Mater, 2017,3:17075-17088.
INDRA A, SONG T, PAIK U. Metal organic framework derived materials: progress and prospects for the energy conversion and storage[J]. Adv Mater, 2018,30(39):1705146-1705170. doi: 10.1002/adma.201705146
LIU J H, ZHANG A F, LIU M. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. J CO2 Util, 2017,21:100-107. doi: 10.1016/j.jcou.2017.06.011
LI W H, ZHANG A F, JIANG X. Low temperature CO2 methanation: ZIF-67-Derived Co-based porous carbon catalysts with controlled crystal morphology and size[J]. ACS Sustainable Chem Eng, 2017,5(9):7824-7831. doi: 10.1021/acssuschemeng.7b01306
ZHANG X L, ZHANG D X, CHANG G G. Bimetallic (Zn/Co) MOFs-derived highly dispersed metallic Co/HPC for completely hydrolytic dehydrogenation of ammonia-borane[J]. Ind Eng Chem Res, 2019,58(17):7209-7216. doi: 10.1021/acs.iecr.9b00897
PERRYIV J J, PERMAN J A, ZAWOROTKO M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks[J]. Chem Soc Rev, 2009,38:1400-1417. doi: 10.1039/b807086p
LI H, Eddaoudi M, O'KEEFFE M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999,402:276-279. doi: 10.1038/46248
CUI Y J, LI B, HE H J. Metal-organic frameworks as platforms for functional materials[J]. Acc Chem Res, 2016,49:483-493. doi: 10.1021/acs.accounts.5b00530
ZHANG H B, NAI J W, YU L. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule, 2017,1:77-107. doi: 10.1016/j.joule.2017.08.008
FEREY G, MELLOT-DRAZNIEKS C, SERRE C. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005,309(5743):2040-2042. doi: 10.1126/science.1116275
ZHU Q L, LI J, XU Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance[J]. J Am Chem Soc, 2013,135(28):10210-10213. doi: 10.1021/ja403330m
GAO D D, ZHANG Y H, ZHOU L Q. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane[J]. Appl Surf Sci, 2017,427:114-122.
YANG K Z, ZHOU L Q, XIONG X. RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane[J]. Micro Meso Mater, 2016,225:1-8. doi: 10.1016/j.micromeso.2015.12.018
NAN C, TENG L, JUN S. Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes[J]. New J Chem, 2014,38:4032-4035. doi: 10.1039/C4NJ00739E
CHEN Y Z, LIANG L F, YANG Q H. A seed-mediated approach to the general and mild synthesis of non-noble metal nanoparticles stabilized by a metal-organic framework for highly efficient catalysis[J]. Mater Horiz, 2015,2:606-612. doi: 10.1039/C5MH00125K
WEN L, SU J, WU X J. Ruthenium supported on MIL-96:an efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2014,39:17129-17135. doi: 10.1016/j.ijhydene.2014.07.179
LU D, YU G F, LI Y. RuCo NPs supported on MIL-96(Al) as highly active catalysts for the hydrolysis of ammonia borane[J]. J Alloys Comp, 2017,694:662-671. doi: 10.1016/j.jallcom.2016.10.055
YANG K Z, ZHOU L Q, YU G F. Ru nanoparticles supported on MIL-53(Cr, Al) as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016,41(15):6300-6309. doi: 10.1016/j.ijhydene.2016.02.104
KANG J X, CHEN T W, ZHANG D F. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation[J]. Nano Energy, 2016,23:145-152. doi: 10.1016/j.nanoen.2016.03.017
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421