催化氨硼烷水解制氢研究进展

刘军辉 郭旭明 宋亚坤 郭新闻

引用本文: 刘军辉, 郭旭明, 宋亚坤, 郭新闻. 催化氨硼烷水解制氢研究进展[J]. 应用化学, 2021, 38(2): 157-169. doi: 10.19894/j.issn.1000-0518.200229 shu
Citation:  Jun-Hui LIU, Xu-Ming GUO, Ya-Kun SONG, Xin-Wen GUO. Recent Advances in Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane[J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 157-169. doi: 10.19894/j.issn.1000-0518.200229 shu

催化氨硼烷水解制氢研究进展

    通讯作者: 宋亚坤, E-mail: songyakunly@163.com; 郭新闻, E-mail: guoxw@dlut..edu.cn
  • 基金项目:

    国家自然科学基金 21908043

    河南省重点攻关项目 192102310209

摘要: 当前,世界范围内的能源利用面临着巨大的挑战,开发绿色洁净能源十分重要。通过水解氨硼烷制备清洁可再生的氢气是解决能源问题的有效途径之一。选择合适的催化剂有效提高制氢效率是氨硼烷水解制氢的关键,开发高效安全的催化剂一直是该领域研究的重点和热点。本文从影响氨硼烷水解制氢反应中催化剂催化性能的因素出发,综述了活性金属组分和载体在催化剂制备过程中以及催化氨硼烷制氢反应中的作用。最后,对催化氨硼烷水解制氢过程所存在的问题以及今后的发展进行了总结和展望。

English

  • 随着社会经济的迅速发展,人类科学技术的不断进步,生产力也在不断地发生转变。当前,全球对能源的需求和依赖也在不断增加。全球化石燃料的大量消耗以及带来的日益严重的环境问题使开发可再生能源受到越来越多的关注。氢气由于具有高质量能量密度和环境友好的特点被认为是最有前景能源载体[1-2]。氢气本身无毒无害,燃烧后唯一的产物是水。氢能用途广泛且来源丰富。然而,如何安全且有效地储存和运输氢是急需解决的问题。在常见的储氢材料中,氨硼烷由于拥有高含氢量(质量储氢密度达到19.6%),室温稳定性好、无毒和环境友好等特点,是最热门的选择之一[3-5]。同时,氨硼烷也是有效的制氢材料。

    氨硼烷制氢的方式分为3种,分别是固态热分解、醇解和水解[6]。热分解制氢是在高温作用下H—B或H—N键断裂,H原子重新组合释放出H2。热分解制氢需要的温度较高、能耗大,不利于大规模生产,且在高温下易产生有毒的挥发性副产物[7]。醇解制氢需要在催化剂的作用下,醇与氨硼烷发生反应生成氢气。虽然催化剂的添加可以提高氨硼烷醇解制氢的速率,但是目前放氢效率还是偏低,并且醇解制氢的成本相对较高[8]。氨硼烷水解制氢也是在催化剂作用下,常温常压条件下即可进行。相比于热解和醇解制氢,水解制氢成本更低、放氢速率更快,且清洁无污染[9]。在水溶液中,氨硼烷分子吸附在催化剂表面,与金属相互作用形成活性中间体。在水分子的进攻下,B—N键断裂,水分子中的H与中间体的H结合,形成H2[10]。选择合适的催化剂来有效提高制氢效率是氨硼烷水解制氢的关键。开发高效安全的催化剂一直是该领域研究的重点和热点。

    氨硼烷水解制氢催化剂的催化性能主要取决于活性金属本身的特性、分散性和颗粒大小以及抗烧结的性能。因此,本文重点从活性组分和载体两方面综述了催化氨硼烷水解制氢催化剂的制备及其催化性能。并对催化氨硼烷水解制氢过程所存在的问题以及今后的发展进行了总结和展望。

    贵金属常作为活性组分加入到催化剂中用于催化各种反应。在催化氨硼烷水解制氢中,贵金属也表现出了优异的催化性能。Xu等[11]于2006年首次发现Pt、Rh、Pd基催化剂在氨硼烷水解制氢反应中表现出很好的催化活性。其中,Pt催化剂催化性能最好,且在循环使用中没有明显的失活现象。随后该团队将Ru、Rh、Pd、Pt和Au纳米簇负载在载体上,研究催化氨硼烷水解制氢性能[12]。其中,Ru、Rh和Pt催化剂活性较高,可以快速使氨硼烷水解产氢,相比之下,Pd和Au催化剂的活性较差。随后,关于贵金属Ru[13-16]、Rh[17-20]、Ag[21-22]、Pt[23-24]和Pd[25-27]基催化剂的研究越来越多,催化剂均表现出了快速催化氨硼烷水解的特性。Lu等[21]将Ag负载在SiO2-CoFe2O4载体上制备了Ag0/SiO2-CoFe2O4催化剂,催化氨硼水解制氢。Ag在载体上具有很好的分散性。相比于其它Ag作为活性组分的催化剂,该催化剂表现出优异的催化活性,Ag负载量为0.98%(质量分数)时,催化剂的转换频率(Turn Over Frequency,TOF)值达到264 molH2/(molcat·min)。同时,催化剂具有磁性,方便反应后的回收分离和循环使用。

    单组分的贵金属催化剂容易被毒化且金属颗粒容易团聚,导致催化活性降低[28]。多组分贵金属之间的电子效应、锚定效应和协同作用有利于提高催化剂的稳定性和催化性能[29-32]。因此,多组分的贵金属催化剂也被制备出来用于高效催化氨硼烷水解制氢。Yao等[33]利用离子液体通过一步法合成出了多孔的PtPd双金属纳米颗粒,通过调节前驱体比例和离子液体浓度制备出了一系列Pd在Pt表面和Pt在Pd表面的纳米颗粒(图 1)。由于其独特的比表面积和多级孔结构,以及Pt和Pd之间的电子效应,Pt25Pd75纳米颗表现出优异的氨硼烷水解制氢活性和稳定性(图 1)。Rakap等[34]合成了Ru-Rh@PVP纳米颗粒用于氨硼烷水解制氢,催化剂的TOF值为386 molH2/(molcat·min),反应活化能为(47.4±2.1) kJ/mol。相似地,Rakap团队还制备出Pt-Ru@PVP和Pd-Rh@PVP纳米颗粒,也表现出较好的催化性能[35-36]

    图 1

    图 1.  多孔Pt25Pd75纳米颗粒的(a, b)透射电子显微镜图,(c)HAADF-STEM图,(d-f)元素分布图,(g)图(c)中Pd和Pt的分布情况,(h)各个催化剂25 ℃时催化氨硼烷水解制氢效果图,(i)多孔Pt25Pd75纳米颗粒的循环性能测试图[33]
    Figure 1.  Porous Pt25Pd75 nanoparticles: (a, b)TEM images, (c)HAADF-STEM, (d-f)elemental mapping images, (g)HAADF-STEM compositional line profiles of Pd (red lines) and Pt (green lines) along the line scanning region marked in (c), (h)The curves of H2 equivalents produced per mole of ammonia borane as a function of reaction time at 25 ℃ with various samples as catalysts, (i)Recyclability using porous Pt25Pd75 nanoparticles as catalysts for hydrogen production from ammonia borane hydrolysis[33]

    虽然贵金属催化剂具有优异的催化性能,但是昂贵的价格和较低的储量还是限制了其大规模的应用。因此,研究者们将一部分注意力放在了非贵金属催化剂的研究上。在非贵金属中,Cu、Co和Ni是较为有效的活性金属[10]。Xu等[10]将分散在载体上的几种非贵金属催化剂用于氨硼烷水解制氢。其中,Co基催化剂的活性最高,Cu基和Ni基催化剂活性相差不多,而Fe基催化剂几乎没有活性。但是,与Pt、Ru和Rh基贵金属催化剂相比,非贵金属催化剂的活性还是比较低。Astruc等[37]制备了高度分散在ZIF-8中的Fe、Co、Ni和Cu纳米颗粒,其中Ni/ZIF-8催化剂表现出最高的催化氨硼烷制氢的活性,TOF值为85.7 molH2/(molcat·min)。同位素实验表明,Ni颗粒表面与水分子之间的键使O—H键断裂的过程是反应的决速步骤。Metin等[38]用PVP作为分散剂,以硼氢化钠为还原剂制备了PVP-Co催化剂。制备的催化剂中Co纳米颗粒分散性较好,表现出较好的催化效果。Rakap等[39]制备了Co-HAP催化剂,在氨硼烷水解制氢反应中表现出较好的催化效果。Yao等[40]设计合成了SiO2包覆Cu纳米颗粒的Cu@SiO2催化剂用于氨硼烷水解制氢。Cu@SiO2催化剂表现出优异的催化活性和稳定性,循环使用10次后仍然保持90%的催化活性。

    非贵金属催化剂的催化活性相比于贵金属催化剂还有一定的差距,实际的催化效果和催化剂的稳定性还有待进一步的提高。而利用非贵金属间的协同作用可以有效提高催化剂的催化效果[42]。因此,双组份和多组分的非贵金属催化剂被制备出来用于氨硼烷水解制氢反应。相比于单组分的Cu基或Co基催化剂,将Cu和Co复合构成的双组分催化剂表现出更加优异的催化性能[43-45]。Zhong等[46]制备了负载在氧化石墨烯载体上的CuCo双金属氧化物颗粒的催化剂,用于氨硼烷水解制氢。催化剂具有优异的催化性能,TOF值为70 molH2/(molcat-M·min)。双金属催化剂的催化活性随催化剂中Cu含量的增加而增加,但是没有Co的存在,催化剂的活性会大幅降低。说明Cu在反应中起主要的催化作用,Co可以加强金属粒子与载体石墨烯间的相互作用。原位同步辐射表征表明,Cu的电子结构在反应前后变化明显,反应前由于水分子在催化剂表面的吸附,Cu处于还原态,水分子的吸附有利于反应的继续进行;反应中Cu由还原态变为氧化态,加速了反应的进行。Xu等[41]将CuCo合金纳米颗粒包覆在MIL-101的孔道中制备了双金属催化剂。单组分的Cu@MIL-101催化剂催化氨硼烷释放氢气的速率很慢,催化效果较差。Co@MIL-101催化剂活性较好,20 min即可使氨硼烷完全释放氢气。由于Cu和Co的协同作用,4 min左右就达到了相同的效果(图 2)。CuCo双组份催化剂的催化性能大幅提高。也有一部分研究集中在CoNi双组份催化剂[47-48]。Feng等[49]通过硼氢化钠和甲基氨硼烷混合还原制备了CoNi双金属催化剂用于氨硼烷水解制氢反应。单组分的Ni基催化剂活性较弱而Co基催化剂的活性较强。双组份的Co0.9Ni0.1催化剂表现出更加优异的催化活性。相似地,Kleitz等[50]制备了CuNi双组分的催化剂,同样表现出了远优于单组分催化剂的催化性能。Lu等[51]制备了磁性Cu1-xFex纳米合金催化剂用于氨硼烷水解制氢。通过调节Cu和Fe物质的量比,发现Cu0.33 Fe0.67催化剂具有最高的催化活性,催化剂的活化能较低。合成的催化剂不仅具有很好的稳定性,且具有磁性的特性使催化剂易于回收,展现出优异的循环使用性能。

    图 2

    图 2.  Cu@MIL-101、Co@MIL-101和CuCo@MIL-101(n(Cu)∶n(Co)=3∶7)催化剂催化氨硼烷水解制氢图[41]
    Figure 2.  Plots of time versus volume of hydrogen generated from ammonia borane(AB) hydrolysis catalyzed by the Cu@MIL-101, Co@MIL-101, and CuCo@MIL-101(n(Cu)∶n(Co)=3∶7) catalysts[41]

    Chen等[52]通过溶剂蒸发法合成了三组分的Cu-Ni-Co@MIL-101催化剂。各组分之间的协同作用使催化剂在氨硼烷水解制氢中表现出较好的催化性能。当n(Cu)∶n(Ni)∶n(Co)=8∶1∶1时,制备的催化剂具有最好的催化性能,TOF值为72.1 molH2/(molcat·min),并且催化剂具有很好的循环使用稳定性。相比于单组分和双组份的催化剂,三组分的Cu-Ni-Co@MIL-101催化剂具有更高的催化活性。Li等[53]首先合成了Co3O4纳米片,然后将Cu和Ni负载在Co3O4纳米片上构成CuO-NiO/Co3O4催化剂。从图 3可以看到,单独的NiO和CuO作为催化剂时活性较差,而将两种组分组合后催化性能明显提升。将双组份负载到Co3O4纳米片上时,催化活性又进一步提升,说明在各组分之间存在协同作用。CuO-NiO/Co3O4催化剂的TOF值为79.1 molH2/(molcat·min)。Lu等[54]将Mo加入到CuCo组分中制备了三组份的催化剂。与单组份和双组份的催化剂相比,催化活性提升明显。在氨硼烷水解体系中加入NaOH后,催化剂的TOF值提高到之前的近3倍。由于多组分金属结合后,金属间的协同作用对催化剂的提升作用十分明显,近些年来的研究越来越多地集中到了多组分催化剂的制备。高效多组分催化剂的制备也将是今后氨硼烷水解制氢的重要发展方向。

    图 3

    图 3.  (a) CuO、NiO、Co3O4、CuO-NiO和CuO-NiO/Co3O4催化氨硼烷水解制氢反应性能图,(b)各个催化剂的TOF值[53]
    Figure 3.  (a)Plots of molar ratio of hydrogen to NH3BH3 versus time for CuO, NiO, Co3O4, CuO-NiO and CuO-NiO/Co3O4 samples and (b) their corresponding TOF[53]

    贵金属催化剂的催化活性好,但是价格昂贵且储存丰度低,难以大规模应用;而非贵金属催化剂虽然价格低,但是目前活性与贵金属相差较大。为了在减少贵金属使用的同时又保持催化剂的活性,贵金属与非贵金属组合型催化剂逐渐被制备出来,并且具有很好的催化效果。

    He等[55]制备了PtNi@SiO2催化剂,并且在SiO2上,Ni包覆在Pt的表面,构成了Pt@Ni的核壳结构。催化剂活性相比于Pt@SiO2催化剂有了大幅度的提高,且具有很好的循环稳定性。Ni包覆厚度较薄时催化活性较高,继续增加Ni的包覆厚度,催化活性则有所降低。Chen等[56]制备了Pt修饰的Ni基催化剂用于氨硼烷水解制氢。从图 4可以看出,Pt以原子级的形态分散在Ni颗粒的周围。Pt位点是水分子活化的活性位点。单独的Ni基催化剂和只含微量Pt的催化剂活性较差,而在5%(质量分数)Ni基催化剂中加入微量Pt后,催化剂的活性显著提升。以Pt为活性基准点时,1/1000Pt+Ni/CTF催化剂的TOF值达到12000 molH2/(molPt·min)。Mori等[57]制备了RuNi/TiO2催化剂,载体上Ru和Ni的协同作用提高了催化剂的催化活性。Cheng等[58]制备了Ru@Ni核壳纳米颗粒负载在石墨烯上的催化剂。相比于单组分的催化剂以及RuNi合金催化剂,Ru@Ni催化剂表现出更加优异的催化性能。Jiang等[59]分别用硼氢化钠和氨硼烷作为还原剂制备了PdCo@MIL-101和Pd@Co@MIL-101催化剂,用于氨硼烷水解制氢反应。核壳结构的Pd@Co纳米颗粒之间金属的协同作用更强,因此Pd@Co@MIL-101催化剂催化氨硼烷水解活性更好,并且由于载体孔道的限域作用,催化剂具有很好的稳定性。Xu等[60]以Rh和Co为活性金属制备了RhCo@ZIF-67双组分催化剂,RhCo双金属催化剂的催化活性相比于单金属的Rh或Co催化剂具有更好催化氨硼烷水解制氢的性能。加入不同Rh和Co比例的催化剂中,Rh25Co75@ZIF-67催化剂的催化性能最好,TOF值为100.21 molH2/(molcat·min)。此外,双组份的PdNi催化剂和RuCo催化剂也被制备出来并在氨硼烷水解制氢中表现出优异的催化性能[61-62]

    图 4

    图 4.  催化剂(a)1/500Pt+Ni/CNT和(b)1/1000Pt+Ni/CTF的HAADF-STEM图;(c)CNT和(d)CTF作为载体的Pt修饰的5% Ni催化剂室温下催化氨硼烷水解制氢性能;(e)不同催化剂以Ni为基准的TOF值;(f)以Pt为活性中心的TOF值[56]
    Figure 4.  HAADF-STEM images of (a)1/500Pt+Ni/CNT, and (b)1/1000Pt+Ni/CTF. Hydrogen generation from aqueous NH3BH3 in the presence of Pt-modified 5% Ni catalysts at room temperature: (c)CNT and (d)CTF supported catalysts. (e)Comparison of TOFs among different catalysts based on Ni. (f)TOFs were calculated based on the Pt-centred active site[56]

    过渡金属磷化物中的电子会从金属原子转移到P上,可以加速质子耦合过程中的电子转移,对氨硼烷水解制氢反应有较好的促进作用。因此,相应的过渡金属磷化物催化剂被制备出来用于氨硼烷水解制氢反应[63-66]。Che等[67]制备了CoP纳米颗粒用于氨硼烷水解制氢,室温下TOF值达到72.2 molH2/(molCoP·min)。以CoP纳米颗粒为催化剂时,氨硼烷水解的诱导期较长,但是体系中阴离子的加入可以有效缩短诱导期。Fu等[68]制备了Ni2P纳米颗粒催化剂,在氨硼烷水解制氢反应中具有优异的活性和稳定性,TOF值达到40.4 molH2/(molNi2P·min)。理论计算结果表明,在Ni2P催化剂的表面,形成了BH3OH-和NH4+中间体,临近的水分子进攻后产生H2,Ni2P表面和反应物分子的结合降低了反应的能垒,促进了反应的进行(图 5)。Chen等[69]以Ni—Co—P纳米颗粒作为催化剂催化氨硼烷水解制氢,TOF值达到58.4 molH2/(molNi0.7Co1.3P·min)。由于Ni—Co—P之间的协同作用、催化剂的高度分散性、增大的比表面积以及Ni0.7Co1.3P与氧化石墨烯的界面作用,将Ni0.7Co1.3P与氧化石墨烯复合构成的催化剂表现出更好的催化效果,TOF值高达153.9 molH2/(molNi0.7Co1.3P·min),在其它的非贵金属催化剂很难达到这么高的活性。催化剂循环使用5次后仍然保持93%的活性。理论计算表明,Co的加入增强了OH*对氨硼烷的活化。

    图 5

    图 5.  Ni2P催化氨硼烷水解能垒变化图[68]
    Figure 5.  Plot of energy changes versus reaction coordinate calculated for Ni2P-catalyzed hydrolysis of AB[68]

    氧化物载体具有优异的水热稳定性,且与负载在上面的金属间较强的相互作用可以提高催化剂中金属颗粒的分散性,并且有效防止反应过程中金属颗粒的团聚[70-71]。Özkar等[72]将Rh负载在CeO2、SiO2、Al2O3、TiO2、ZrO2和HfO2氧化物载体上,研究不同氧化物载体催化剂催化氨硼烷水解制氢反应的影响。其中,Rh0/CeO2具有最好的催化活性(图 6)。Rh负载量为0.1%的Rh0/CeO2催化剂催化活性最高,TOF值达到2010 molH2/(molRh·min)。具有可还原性的CeO2载体在反应条件下Ce4+容易被还原成Ce3+,氧化物表面富集的负电子对活性Rh0位点具有更强的键合作用,使催化剂表现出更高的活性。Rh0/CeO2催化剂还具有较好的循环使用性。该团队还分别研究了将Pd和Ru负载在CeO2载体上的催化剂,以CeO2载体的催化剂均表现出较好的催化活性[15, 25]。以TiO2为载体制备的催化剂具有很好的分散性,可以有效催化氨硼烷水解制氢反应[18, 57]。在TiO2载体上,较低的温度下Ru可以快速且均匀地被还原[57]。沸石也被用作载体来制备催化氨硼烷水解制氢的催化剂[73-74]。Linares等[74]以不同硅铝比的沸石为载体制备了Pd基催化剂。沸石中的酸性位点对催化剂的催化活性的提高起到了促进作用。沸石高度粗糙的表面使Pd颗粒尺寸较小,提高了催化剂的分散性。

    图 6

    图 6.  不同载体负载Rh催化氨硼烷水解制氢TOF值的比较,(a)高Rh负载量,(b)低Rh负载量[72]
    Figure 6.  Comparison of TOF values of rhodium nanoparticles supported on different oxides at (a) high and (b) low rhodium loadings of catalysts used in hydrogen generation from the hydrolysis of ammonia borane[72]

    碳材料具有高的比表面积,优异的导电性以及可调变的电子结构和表面化学性质,因而常被用作载体制备碳基催化剂。在催化氨硼烷水解制氢反应体系中,以碳材料(石墨烯、碳纳米管和氮掺杂碳等)为载体的催化剂表现出优异的催化性能。

    石墨烯作为载体被广泛应用在体制备催化氨硼烷水解制氢反应的催化剂中,并且已经证明制备的催化剂具有优异的催化性能[43, 47, 58, 61, 69, 75-76]。Cheng等[49]将CoNi双金属颗粒负载在石墨烯上,相比于SiO2、炭黑和氧化铝载体,以石墨烯为载体的催化剂催化活性更高,且催化剂的循环使用性更好。Zhong等[46]通过同步辐射表征发现,在CuCo-GO催化剂中纳米粒子与氧化石墨烯之间的相互作用可以加强催化剂的催化作用。Lu等[77]在石墨烯载体上负载Ni制备了氨硼烷水解制氢的催化剂。掺杂稀土金属后,催化剂的活性相比于Ni/graphene催化剂有了巨大的提升。在所用的稀土金属氧化物中,CeO2的掺入提升效果最为明显。以石墨烯作为载体也使催化剂的活性得到了大幅提升。CeO2、活性金属以及石墨烯的结合增强了催化剂的稳定性。该团队还以石墨烯为载体制备了Mo掺杂的Ni基催化剂[78]。催化剂具有较好的分散性。Mo的加入显著提高了催化性能,活性金属与石墨烯载体的相互作用也是催化剂展现出优异催化性能的原因。Ni0.9Mo0.1/graphene的TOF值为66.7 molH2/(molmetal·min),达到了Pt基催化剂的催化效果。Liu等[48]将CoNi纳米颗粒负载在多壁碳纳米管上,制备了分散性较好的非贵金属催化剂。在多壁碳纳米管的表面,金属颗粒的尺寸在2 nm左右。Co和Ni之间的协同作用有效增强了催化氨硼烷水解制氢的性能。相比于选用的其它载体,多壁碳纳米管作为载体的催化剂的催化活性更高。Xu等[79]还选用了具有良好导电性且比表面积大的胺功能化的碳纳米管作为载体,通过胺基团来锚定金属颗粒。Fan等[17]以N掺杂的碳材料为载体制备了Rh/NPC催化剂,载体的高比表面积和N物种使金属颗粒更好的分散在载体上,为反应提供了更多了活性位点。Su等[80]以两种不同的N掺杂的碳材料作为载体,采用3种不同的还原方法制备了AuCo和AuNi双组份的催化剂。虽然催化剂都具有很好的分散性且金属颗粒较小,但是不同载体的催化剂催化活性相差较大。N掺杂的NXC(N-doped Vulcan XC-72 carbon)和AuCo纳米颗粒之间的协同作用有效促进了氨硼烷中N—B键的活化,催化剂表现出最好的催化性能。Lu等[81]用SBA-15作为硬模板剂合成了介孔碳氮材料,以该材料作为载体,负载金属Pd和PdNi后制备了一系列氨硼烷水解制氢的催化剂。载体的孔道性质有助于反应过程中的传质。催化剂具有较好的分散性,载体上的金属颗粒较小,并且由于金属颗粒于载体界面间的相互作用,制备的催化剂具有优异的催化活性。Pd/MCN催化剂的TOF值高达125 molH2/(molPd·min),Pd74Ni26/MCN催化剂的TOF值高达246.8 molH2/(molPdNi·min)。以金属-有机骨架(MOFs)材料作为前驱体,在惰性气氛中热解可以得到金属颗粒包覆在碳基质上的催化剂,制备的催化剂中金属颗粒具有很好的分散性[82-86]。Yang等[87]以双金属Co/Zn-MOF-74为前驱体,在高温下热解制备了以多级孔碳为载体的Co基催化剂。在热解MOFs的过程中,Zn的挥发有助于减少Co颗粒的团聚,催化剂中Co颗粒尺寸很小,且分散性好。相比于以单金属Co-MOF-74为前驱体制备的催化剂具有更高的催化活性。Xu等[65]将NiCoP纳米颗粒负载到了ZIF-67衍生的氧掺杂的多孔碳载体上,用作氨硼烷水解制氢催化剂。由于Ni、Co、P以及载体之间的相互作用,催化剂在反应中具有较高的催化活性。

    MOFs材料是由金属离子或金属氧团簇与有机配体通过配位自组装的方式构成多维周期性结构的晶体材料[88-90]。MOFs材料具有高度有序的孔结构和超高的比表面积[91]。因此,作为载体有利于活性金属颗粒的分散,包覆在MOFs孔道中的金属纳米颗粒在反应过程中不易团聚,使催化剂具有很好的稳定性。

    MIL-101具有极高的比表面积和特殊的空腔结构,可以有效实现对纳米粒子的限域作用[92-93],因此常被用作载体用于制备氨硼烷水解制氢催化剂[41, 52, 59, 94-97]。Zhou等[94]通过液相浸渍和原位还原法将Cu和Ni纳米颗粒封装在MIL-101的孔道中,制备了CuxNiy@MIL-101催化剂。如图 7所示,MIL-101没有催化氨硼烷水解的活性,Cu2Ni1纳米颗粒的催化活性也较弱,而Cu2Ni1@MIL-101催化剂的催化活性则大幅提高。说明在CuNi纳米颗粒和MIL-101之间存在着协同作用。双金属间的协同作用、金属颗粒较好的分散性以及金属与MOFs载体间的协同作用是催化剂具有优异性能的原因。Wen等[98]用MIL-96(Al)作为载体,通过液相浸渍法制备了Ru/MIL-96(Al)催化剂,MIL-96(Al)上Ru颗粒的平均粒径为2 nm,载体的特殊结构以及活性金属良好的分散性使催化剂在氨硼烷水解制氢反应中表现出较好的催化性能,TOF值为231 molH2/(molRu·min)。Zhou等[99]同样以MIL-96(Al)作为载体,制备了双金属的RuCo@MIL-96(Al)催化剂。金属间的协同作用和MIL-96(Al)载体上金属颗粒较好的分散性使催化剂具有优异的催化氨硼烷水解制氢的性能。Zhou等[100]通过液相浸渍法将Ru分别沉积在MIL-53(Cr)和MIL-53(Al)载体上,得到了具有较好分散性的催化剂,转换频率(TOF)值分别为260.8和266.9 molH2/(molRu·min)。Astruc团队[37]和Xu团队[60]分别以ZIF-8和ZIF-67为载体制备的催化剂也表现出了较好的催化氨硼烷水解制氢性能。

    图 7

    图 7.  Cu2Ni1@MIL-101、MIL-101和CuNi NPs催化氨硼烷水解制氢[94]
    Figure 7.  Hydrogen generation from the hydrolysis of AB catalyzed by Cu2Ni1@MIL-101, MIL-101 and CuNi NPs[94]

    表 1

    表 1  不同催化剂催化氨硼烷水解制氢活性
    Table 1.  The activities of different catalysts for H2 production from ammonia borane hydrolysis
    下载: 导出CSV
    催化剂Catalyst 转换频率TOF(molH2/(molcat·min)) 参考文献Reference
    Ag0/SiO2-CoFe2O4 264 [21]
    Ru-Rh@PVP 386 [34]
    Ni/ZIF-8 85.7 [37]
    Cu0.8Co0.2O-GO 70 [46]
    Cu0.8Ni0.1Co0.1 @MIL-101 72.1 [52]
    CuO-NiO/Co3O4 79.1 [53]
    Rh25Co75@ZIF-67 100.21 [60]
    CoP 72.2 [67]
    Ni2P 40.4 [68]
    Ni0.7Co1.3P 58.4 [69]
    Ni0.7Co1.3P/GO 153.9 [69]
    Rh0/CeO2 2010 [72]
    Ni0.9Mo0.1/graphene 66.7 [78]
    Pd/MCN 125 [81]
    Pd74Ni26/MCN 246.8 [81]
    Ru/MIL-96(Al) 231 [98]
    Ru/MIL-53(Cr) 260.8 [100]
    Ru/MIL-53(AL) 266.9 [100]
    Pt58Ni33Au9 496 [101]

    本文从活性组分和载体两方面总结了催化氨硼烷水解制氢反应的催化剂的制备、催化性能以及表现出优异催化性能的原因。贵金属Ru、Rh、Pd、Pt和非贵金属Cu、Co、Ni是催化剂主要用到的活性金属。在此基础上,贵金属、非贵金属以及贵金属与非贵金属的组合等多组分型催化剂被制备出来以提高催化活性。此外,过渡金属磷化物也可以有效催化氨硼烷水解制氢反应。氧化物、碳材料和MOFs材料等被用作催化剂的载体,起到分散活性位点、与活性金属协同作用以及防止反应过程中金属颗粒团聚等作用。虽然目前文献报道了各种催化剂,在氨硼烷水解制氢反应中表现出了不错的催化性能,但是在水解氨硼烷制氢中仍面临着一些挑战。氨硼烷水解脱氢后的产物是偏硼酸胺和硼酸,水解产物的处理是需要考虑并解决的问题,同时由于氨硼烷价格相对较高,如何有效地实现氨硼烷再生对氨硼烷制氢领域有较大的影响。为了解决贵金属催化剂成本较高的问题,采用了非贵金属催化剂以及用非贵金属部分替代贵金属的多组分催化剂,但是目前替代催化剂的催化活性与贵金属催化剂还有差距,需要在今后的研究中进一步提高催化性能。目前,选择合适的载体使催化剂具有不错的循环使用性,但是还不能实际的大规模应用。因此,需要从催化剂结构设计的角度出发制备稳定性更好的催化剂用于氨硼烷水解制氢。


    1. [1]

      SARTBAEVA A, KUZNETSOV V L, WELLS S A. Hydrogen nexus in a sustainable energy future[J]. Energy Environ Sci, 2008, 1(1):  79-85. doi: 10.1039/b810104n

    2. [2]

      SCHAPBACH L, ZUTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861):  353-358. doi: 10.1038/35104634

    3. [3]

      ZHAN W W, ZHU Q L, XU Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts[J]. ACS Catal, 2016, 6(10):  6892-6905. doi: 10.1021/acscatal.6b02209

    4. [4]

      LU Z, SCHWEIGHAUSER L, HAUSMANN H. Metal-free ammonia-borane dehydrogenation catalyzed by a bis(borane) Lewis acid[J]. Angew Chem Int Ed, 2015, 54(51):  15556-15559. doi: 10.1002/anie.201508360

    5. [5]

      YAO Q L, DING Y Y, LU Z H. Noble-metal-free nanocatalysts for hydrogen generation from boron- and nitrogen-based hydrides[J]. Inorg Chem Front, 2020, 7:  3837-3874. doi: 10.1039/D0QI00766H

    6. [6]

      李燕, 邓雨真, 俞晶铃. 氨硼烷分解制氢及其再生的研究进展[J]. 化工进展, 2019,38,(12): 5330-5338. LI Y, DENG Y Z, YU J L. Research progress in hydrogen production from decomposition of ammonia borane and its regeneration[J]. Chem Ind Eng Prog, 2019, 38(12):  5330-5338.

    7. [7]

      SHRESTHA R, DIYABALANAGE H, SEMELSBERGER T. Catalytic dehydrogenation of ammonia borane in non-aqueous medium[J]. Int J Hydrogen Energy, 2009, 34(6):  2616-2621. doi: 10.1016/j.ijhydene.2009.01.014

    8. [8]

      CALISKAN S, ZAHMAKIRAN M, OZKAR S. Zeolite confined rhodium(0) nanoclusters as highly active, reusable, and long-lived catalyst in the methanolysis of ammonia-borane[J]. Appl Catal B, 2010, 93(3/4):  387-394.

    9. [9]

      YAMADA Y, YANO K, XU Q. Cu/Co3O4 nanoparticles as catalysts for hydrogen evolution from ammonia borane by hydrolysis[J]. J Phys Chem C, 2010, 114:  16456-16462. doi: 10.1021/jp104291s

    10. [10]

      XU Q, CHANDRA M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. J Power Sources, 2006, 163(1):  364-370. doi: 10.1016/j.jpowsour.2006.09.043

    11. [11]

      CHANDRA M, XU Q. A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia-borane[J]. J Power Sources, 2006, 156(2):  190-194. doi: 10.1016/j.jpowsour.2005.05.043

    12. [12]

      CHANDRA M, XU Q. Room Temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J]. J Power Sources, 2007, 168(1):  135-142. doi: 10.1016/j.jpowsour.2007.03.015

    13. [13]

      李年谱. 钌基催化剂催化氨硼烷水解制氢性能研究[D]. 2019, 桂林: 桂林电子科技大学.LI N P. Ru-based catalysts for catalytic hydrogen production ammonia-borane hydrolysis[D]. 2019, Guilin: Guilin University of Electronic Science and Technology.

    14. [14]

      ZHOU Q X, YANG H X, XU C X. Nanoporous Ru as highly efficient catalyst for hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016, 41(30):  12714-12721. doi: 10.1016/j.ijhydene.2016.05.128

    15. [15]

      AKBAYRAK S, TONBUL Y, ZKAR S. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Dalton Trans, 2016, 45(27):  10969-10978. doi: 10.1039/C6DT01117A

    16. [16]

      DU C, AO Q, CAO N. Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2015, 40(18):  6180-6187. doi: 10.1016/j.ijhydene.2015.03.070

    17. [17]

      ZHONG F Y, WANG Q, XU C L. Catalytically active rhodium nanoparticles stabilized by nitrogen doped carbon for the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2018, 43(49):  22273-22280. doi: 10.1016/j.ijhydene.2018.10.064

    18. [18]

      AKBAYRAK, GENÇTVRK, MORKAN. Rhodium(0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. RSC Adv, 2014, 4(26):  13742-13748. doi: 10.1039/C4RA00469H

    19. [19]

      KARAHAN S, ZAHMAKIRAN M, OZKAR S. A facile one-step synthesis of polymer supported rhodium nanoparticles in organic medium and their catalytic performance in the dehydrogenation of ammonia-borane[J]. Chem Commun, 2012, 48(8):  1180-1182. doi: 10.1039/C1CC15864C

    20. [20]

      TONBUL Y, AKBAYRAK S, OZKAR S. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane[J]. J Colloid Interface Sci, 2019, 553:  581-587. doi: 10.1016/j.jcis.2019.06.038

    21. [21]

      CHEN J M, LU Z H, WANG Y Q. Magnetically recyclable Ag/SiO2-CoFe2O4 nanocomposite as a highly active and reusable catalyst for H2 production[J]. Int J Hydrogen Energy, 2015, 40(14):  4777-4785. doi: 10.1016/j.ijhydene.2015.02.054

    22. [22]

      XU P, LU W W, ZHANG J J. Efficient hydrolysis of ammonia borane for hydrogen evolution catalyzed by plasmonic Ag@Pd core-shell nanocubes[J]. ACS Sustainable Chem Eng, 2020, 8(33):  12366-12377. doi: 10.1021/acssuschemeng.0c02276

    23. [23]

      AIJAZ A, KARKAMKAR A, CHOI Y. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach[J]. J Am Chem Soc, 2012, 134(34):  13926-13929. doi: 10.1021/ja3043905

    24. [24]

      CHEN W Y, JI J, DUAN X Z. Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane[J]. Chem Commun, 2014, 50(17):  2142-2144. doi: 10.1039/c3cc48027e

    25. [25]

      TONBUL Y, AKBAYRAK S, ZKAR S. Palladium(0) nanoparticles supported on ceria: highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016, 41(26):  11154-11162. doi: 10.1016/j.ijhydene.2016.04.058

    26. [26]

      AKBAYRAK S, KAYA M, VOLKAN M. Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: a highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane[J]. Appl Catal B, 2014, 147:  387-393. doi: 10.1016/j.apcatb.2013.09.023

    27. [27]

      XI P X, CHEN F, XIE G Q. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Nanoscale, 2012, 4(18):  5597-5601. doi: 10.1039/c2nr31010d

    28. [28]

      HU H, XIN J H, HU H. Synthesis and stabilization of metal nanocatalysts for reduction reactions-a review[J]. J Mater Chem A, 2015, 3:  11157-11182. doi: 10.1039/C5TA00753D

    29. [29]

      JIANG X, XIONG Y X, WANG Y F. Treelike two-level PdxAgy nanocrystals tailored for bifunctional fuel cell electrocatalysis[J]. J Mater Chem A, 2019, 7:  5248-5257. doi: 10.1039/C8TA11538A

    30. [30]

      ZHANG N, SHAO Q, XIAO X H. Advanced catalysts derived from composition-segregated platinum-nickel nanostructures: new opportunities and challenges[J]. Adv Funct Mater, 2019, 29(13):  1808161-1080188. doi: 10.1002/adfm.201808161

    31. [31]

      FANG H, YANG J H, WEN M. Nanoalloy materials for chemical catalysis[J]. Adv Mater, 2018, 30(17):  1705698-1705707. doi: 10.1002/adma.201705698

    32. [32]

      LI S, ZHOU Y T, KANG X. A Simple and effective principle for a rational design of heterogeneous catalysts for dehydrogenation of formic acid[J]. Adv Mater, 2019, 31:  1806781-1806787. doi: 10.1002/adma.201806781

    33. [33]

      YAO K S, ZHAO C S, WANG N. An aqueous synthesis of porous PtPd nanoparticles with reversed bimetallic structures for highly efficient hydrogen generation from ammonia borane hydrolysis[J]. Nanoscale, 2020, 12(2):  638-647. doi: 10.1039/C9NR07144J

    34. [34]

      RAKAP M. PVP-stabilized Ru-Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Alloys Comp, 2015, 649:  1025-1030. doi: 10.1016/j.jallcom.2015.07.249

    35. [35]

      RAKAP M. Hydrogen generation from hydrolysis of ammonia borane in the presence of highly efficient poly(n-vinyl-2-pyrrolidone)-protected platinum-ruthenium nanoparticles[J]. Appl Catal A, 2014, 478:  15-20. doi: 10.1016/j.apcata.2014.03.022

    36. [36]

      RAKAP M. The highest catalytic activity in the hydrolysis of ammonia borane by poly(n-vinyl-2-pyrrolidone)-protected palladium-rhodium nanoparticles for hydrogen generation[J]. Appl Catal B, 2015, 163:  129-134. doi: 10.1016/j.apcatb.2014.07.050

    37. [37]

      WANG C L, TUNINETTI J, WANG Z. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: high efficiency, mechanism, and controlled hydrogen release[J]. J Am Chem Soc, 2017, 139(33):  11610-11615. doi: 10.1021/jacs.7b06859

    38. [38]

      METIN O, OZKAR S. Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using water-soluble polymer-stabilized cobalt(0) nanoclusters catalyst[J]. Energy Fuels, 2009, 23:  3517-3526. doi: 10.1021/ef900171t

    39. [39]

      RAKAP M, ZKAR S. Hydroxyapatite-supported cobalt(0) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane[J]. Catal Today, 2005, 98(1):  17-25.

    40. [40]

      YAO Q, LU Z H, ZHANG Z J. One-Pot Synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane[J]. Sci Rep, 2014, 4:  7597-7604.

    41. [41]

      LI J, ZHU Q L, XU Q. Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal-organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation[J]. Catal Sci Technol, 2015, 5:  525-530. doi: 10.1039/C4CY01049C

    42. [42]

      SINGH A, XU Q. Synergistic catalysis over Bimetallic alloy nanoparticles[J]. ChemCatChem, 2013, 5(3):  652-676. doi: 10.1002/cctc.201200591

    43. [43]

      XU M, HUAI X L, ZHANG H. Highly dispersed CuCo nanoparticles supported on reduced graphene oxide as high-activity catalysts for hydrogen evolution from ammonia borane hydrolysis[J]. J Nanopart Res, 2018, 20(12):  329-341. doi: 10.1007/s11051-018-4429-6

    44. [44]

      WANG H A, ZHOU L M, HAN M. CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane[J]. J Alloys Compd, 2015, 651:  382-388. doi: 10.1016/j.jallcom.2015.08.139

    45. [45]

      ZHENG H C, FENG K, SHANG Y P. Cube-like CuCoO nanostructures on reduced graphene oxide for H2 Generation from ammonia borane[J]. Inorg Chem Front, 2018, 5:  1180-1187. doi: 10.1039/C8QI00183A

    46. [46]

      FENG K, ZHONG J, ZHAO B H. CuxCo1-xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia-borane[J]. Angew Chem Int Ed, 2016, 55:  1-6. doi: 10.1002/anie.201510990

    47. [47]

      YANG Y W, ZHANG F, WANG H L. Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation[J]. J Nanomater, 2014, 2014:  1-9.

    48. [48]

      WANG Q T, ZHANG Z, LIU J. Bimetallic non-noble CoNi nanoparticles monodispersed on multiwall carbon nanotubes: highly efficient hydrolysis of ammonia borane[J]. Mater Chem Phys, 2017, 204:  58-61.

    49. [49]

      FENG W, LAN Y, NAN C. In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane[J]. Int J Hydrogen Energy, 2014, 39(7):  3371-3380. doi: 10.1016/j.ijhydene.2013.12.113

    50. [50]

      YEN H, SEO Y, KALIAGUINE S. Role of metal-support interactions, particle size, and metal-metal synergy in CuNi nanocatalysts for H2 generation[J]. ACS Catal, 2015, 5(9):  5505-5511. doi: 10.1021/acscatal.5b00869

    51. [51]

      LU Z H, LI J P, ZHU A L. Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2013, 38(13):  5330-5337. doi: 10.1016/j.ijhydene.2013.02.076

    52. [52]

      LIANG Z J, XIAO X Z, YU X Y. Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane[J]. J Alloys Comp, 2018, 741:  501-508. doi: 10.1016/j.jallcom.2017.12.151

    53. [53]

      LIAO J Y, FENG Y F, LIN W M. CuO-NiO/Co3O4 hybrid nanoplates as highly active catalyst for ammonia borane hydrolysis[J]. Int J Hydrogen Energy, 2020, 45(15):  8168-8176. doi: 10.1016/j.ijhydene.2020.01.155

    54. [54]

      YAO Q L, YANG K, HONG X L. Base-promoted hydrolytic dehydrogenation of ammonia borane catalyzed by noble-metal-free nanoparticles[J]. Catal Sci Technol, 2018, 8(3):  870-877. doi: 10.1039/C7CY02365K

    55. [55]

      QI X H, LI X C, CHEN B. Highly active nanoreactors: patchlike or thick Ni coating on Pt nanoparticles based on confined catalysis[J]. ACS Appl Mater Interfaces, 2016, 8:  1922-1928. doi: 10.1021/acsami.5b10083

    56. [56]

      LI Z, HE T, MATSUMURA D. Atomically dispersed Pt on the surface of Ni particles: synthesis and catalytic function in hydrogen generation from aqueous ammonia-borane[J]. ACS Catal, 2017, 7:  6762-6769. doi: 10.1021/acscatal.7b01790

    57. [57]

      MORI K, MIYAWAKI K, YAMASHITA H. Ru and Ru-Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia-borane[J]. ACS Catal, 2016, 6(5):  3128-3135. doi: 10.1021/acscatal.6b00715

    58. [58]

      CAO N, SU J, LUO W. Hydrolytic dehydrogenation of ammonia borane and methylamine borane catalyzed by graphene supported Ru@Ni core-shell nanoparticles[J]. Int J Hydrogen Energy, 2014, 39(1):  426-435. doi: 10.1016/j.ijhydene.2013.10.059

    59. [59]

      CHEN Y Z, XU Q, YU S H. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis[J]. Small, 2014, 11(1):  71-76.

    60. [60]

      QU X, YU Z, LI Z. CoRh nanoparticles supported on ZIF-67 as highly efficient catalysts for hydrolytic dehydrogenation of ammonia boranes for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2017, 42(51):  30037-30043. doi: 10.1016/j.ijhydene.2017.10.040

    61. [61]

      CIFTCI N, METIN O. Monodisperse nickel-palladium alloy nanoparticles supported on reduced graphene oxide as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy, 2014, 39:  18863-18870. doi: 10.1016/j.ijhydene.2014.09.060

    62. [62]

      LI X J, ZENG C M, FAN G Y. Magnetic RuCo nanoparticles supported on two-dimensional titanium carbide as highly active catalysts for the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2015, 40(30):  9217-9224. doi: 10.1016/j.ijhydene.2015.05.168

    63. [63]

      ZHOU X, MENG X F, WANG J M. Boron nitride supported NiCoP nanoparticles as noble metal-free catalyst for highly efficient hydrogen generation from ammonia borane[J]. Int J Hydrogen Energy, 2019, 44(10):  4764-4770. doi: 10.1016/j.ijhydene.2019.01.026

    64. [64]

      FENG X, ZHAO Y H, LIU D K. Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst[J]. Int J Hydrogen Energy, 2018, 43:  17112-17120. doi: 10.1016/j.ijhydene.2018.07.055

    65. [65]

      QU X P, JIANG R, LI Q. Hydrolysis of ammonia borane catalyzed by NiCoP/OPC-300 nanocatalysts: high selectivity, efficiency and mechanism[J]. Green Chem, 2019, 21:  850-860. doi: 10.1039/C8GC03536A

    66. [66]

      LIN Y X, YANG L, JIANG H L. Boosted reactivity of ammonia borane dehydrogenation over Ni/Ni2P heterostructure[J]. J Phys Chem Lett, 2019, 10:  1048-1054. doi: 10.1021/acs.jpclett.9b00122

    67. [67]

      FU Z G, XU Y, CHAN L F. Highly efficient hydrolysis of ammonia borane by anion (-OH, F-, Cl-)-tuned interactions between reactant molecules and CoP nanoparticles[J]. Chem Commun, 2017, 53(4):  705-708. doi: 10.1039/C6CC08120G

    68. [68]

      PENG C, KANG L, CAO S. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane[J]. Angew Chem Int Ed, 2015, 127:  15951-15955. doi: 10.1002/ange.201508113

    69. [69]

      Hou C C, Li Q, Wang C J. Ternary Ni-Co-P nanoparticles and their hybrids with graphene as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane[J]. Energy Environ Sci, 2017, 10(8):  1770-1776. doi: 10.1039/C7EE01553D

    70. [70]

      LI W A, NIE X W, JIANG X. ZrO2 Support imparts superior activity and stability of Co Catalysts for CO2 methanation[J]. Appl Catal B, 2018, 220:  397-408. doi: 10.1016/j.apcatb.2017.08.048

    71. [71]

      WAN H J, WU B S, XIANG H W. Fischer-tropsch synthesis: influence of support incorporation manner on metal dispersion, metal-support interaction, and activities of iron catalysts[J]. ACS Catal, 2012, 2(9):  1877-1883. doi: 10.1021/cs200584s

    72. [72]

      AKBAYRAK S, TONBU Y, ÖZKAR S. Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane[J]. Appl Catal B, 2016, 198:  162-170. doi: 10.1016/j.apcatb.2016.05.061

    73. [73]

      ZAHMAKIRAN M, AYVAL T, AKBAYRAK S. Zeolite framework stabilized nickel(0) nanoparticles: active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride[J]. Catal Today, 2011, 170(1):  76-84. doi: 10.1016/j.cattod.2010.09.022

    74. [74]

      GIL-SAN-MILLAN R, GRAU-ATIENZA A, JOHNSON D T. Improving hydrogen production from the hydrolysis of ammonia borane by using multifunctional catalysts[J]. Int J Hydrogen Energy, 2018, 43(36):  17100-17111. doi: 10.1016/j.ijhydene.2018.06.137

    75. [75]

      ZHONG W D, TIAN X K, YANG C. Active 3D Pd/graphene aerogel catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J]. Int J Hydrogen Energy, 2016, 41:  15225-15235. doi: 10.1016/j.ijhydene.2016.06.263

    76. [76]

      ZHAO B H, FENG K, WANG Y. PtxNi10-xO Nanoparticles supported on N-doped graphene oxide with a synergetic effect for highly efficient hydrolysis of ammonia borane[J]. Catal Sci Technol, 2017, 7:  5135-5142. doi: 10.1039/C7CY01742A

    77. [77]

      YAO Q L, LU Z H, YANG Y W. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Nano Res, 2018, 11(8):  4412-4422. doi: 10.1007/s12274-018-2031-y

    78. [78]

      YAO Q L, LU Z H, HUANG W. High Pt-like activity of the Ni-Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. J Mater Chem A, 2016, 4:  8579-8583. doi: 10.1039/C6TA02004F

    79. [79]

      KANG K, GU X J, GUO L L. Efficient catalytic hydrolytic dehydrogenation of ammonia borane over surfactant-free bimetallic nanoparticles immobilized on amine-functionalized carbon nanotubes[J]. Int J Hydrogen Energy, 2015, 40:  12315-12324. doi: 10.1016/j.ijhydene.2015.07.081

    80. [80]

      GUO L L, GU X J, KANG K. Porous nitrogen-doped carbon-immobilized bimetallic nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Mater Chem A, 2015, 3:  22807-22815. doi: 10.1039/C5TA05487G

    81. [81]

      WANG W, LU Z H, LUO Y. Mesoporous carbon nitride supported Pd and Pd-Ni nanoparticles as highly efficient catalyst for catalytic hydrolysis of NH3BH3[J]. ChemCatChem, 2018, 10(7):  1620-1626. doi: 10.1002/cctc.201701989

    82. [82]

      CHENG N Y, REN L, XU X. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts[J]. Adv Energy Mater, 2018, 8(25):  1801257-1801277. doi: 10.1002/aenm.201801257

    83. [83]

      DANG S, ZHU Q L, XU Q. Nanomaterials derived from metal-organic frameworks[J]. Nat Rev Mater, 2017, 3:  17075-17088.

    84. [84]

      INDRA A, SONG T, PAIK U. Metal organic framework derived materials: progress and prospects for the energy conversion and storage[J]. Adv Mater, 2018, 30(39):  1705146-1705170. doi: 10.1002/adma.201705146

    85. [85]

      LIU J H, ZHANG A F, LIU M. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. J CO2 Util, 2017, 21:  100-107. doi: 10.1016/j.jcou.2017.06.011

    86. [86]

      LI W H, ZHANG A F, JIANG X. Low temperature CO2 methanation: ZIF-67-Derived Co-based porous carbon catalysts with controlled crystal morphology and size[J]. ACS Sustainable Chem Eng, 2017, 5(9):  7824-7831. doi: 10.1021/acssuschemeng.7b01306

    87. [87]

      ZHANG X L, ZHANG D X, CHANG G G. Bimetallic (Zn/Co) MOFs-derived highly dispersed metallic Co/HPC for completely hydrolytic dehydrogenation of ammonia-borane[J]. Ind Eng Chem Res, 2019, 58(17):  7209-7216. doi: 10.1021/acs.iecr.9b00897

    88. [88]

      PERRYIV J J, PERMAN J A, ZAWOROTKO M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks[J]. Chem Soc Rev, 2009, 38:  1400-1417. doi: 10.1039/b807086p

    89. [89]

      LI H, Eddaoudi M, O'KEEFFE M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402:  276-279. doi: 10.1038/46248

    90. [90]

      CUI Y J, LI B, HE H J. Metal-organic frameworks as platforms for functional materials[J]. Acc Chem Res, 2016, 49:  483-493. doi: 10.1021/acs.accounts.5b00530

    91. [91]

      ZHANG H B, NAI J W, YU L. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule, 2017, 1:  77-107. doi: 10.1016/j.joule.2017.08.008

    92. [92]

      FEREY G, MELLOT-DRAZNIEKS C, SERRE C. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743):  2040-2042. doi: 10.1126/science.1116275

    93. [93]

      ZHU Q L, LI J, XU Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance[J]. J Am Chem Soc, 2013, 135(28):  10210-10213. doi: 10.1021/ja403330m

    94. [94]

      GAO D D, ZHANG Y H, ZHOU L Q. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane[J]. Appl Surf Sci, 2017, 427:  114-122.

    95. [95]

      YANG K Z, ZHOU L Q, XIONG X. RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane[J]. Micro Meso Mater, 2016, 225:  1-8. doi: 10.1016/j.micromeso.2015.12.018

    96. [96]

      NAN C, TENG L, JUN S. Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes[J]. New J Chem, 2014, 38:  4032-4035. doi: 10.1039/C4NJ00739E

    97. [97]

      CHEN Y Z, LIANG L F, YANG Q H. A seed-mediated approach to the general and mild synthesis of non-noble metal nanoparticles stabilized by a metal-organic framework for highly efficient catalysis[J]. Mater Horiz, 2015, 2:  606-612. doi: 10.1039/C5MH00125K

    98. [98]

      WEN L, SU J, WU X J. Ruthenium supported on MIL-96:an efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2014, 39:  17129-17135. doi: 10.1016/j.ijhydene.2014.07.179

    99. [99]

      LU D, YU G F, LI Y. RuCo NPs supported on MIL-96(Al) as highly active catalysts for the hydrolysis of ammonia borane[J]. J Alloys Comp, 2017, 694:  662-671. doi: 10.1016/j.jallcom.2016.10.055

    100. [100]

      YANG K Z, ZHOU L Q, YU G F. Ru nanoparticles supported on MIL-53(Cr, Al) as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016, 41(15):  6300-6309. doi: 10.1016/j.ijhydene.2016.02.104

    101. [101]

      KANG J X, CHEN T W, ZHANG D F. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation[J]. Nano Energy, 2016, 23:  145-152. doi: 10.1016/j.nanoen.2016.03.017

  • 图 1  多孔Pt25Pd75纳米颗粒的(a, b)透射电子显微镜图,(c)HAADF-STEM图,(d-f)元素分布图,(g)图(c)中Pd和Pt的分布情况,(h)各个催化剂25 ℃时催化氨硼烷水解制氢效果图,(i)多孔Pt25Pd75纳米颗粒的循环性能测试图[33]

    Figure 1  Porous Pt25Pd75 nanoparticles: (a, b)TEM images, (c)HAADF-STEM, (d-f)elemental mapping images, (g)HAADF-STEM compositional line profiles of Pd (red lines) and Pt (green lines) along the line scanning region marked in (c), (h)The curves of H2 equivalents produced per mole of ammonia borane as a function of reaction time at 25 ℃ with various samples as catalysts, (i)Recyclability using porous Pt25Pd75 nanoparticles as catalysts for hydrogen production from ammonia borane hydrolysis[33]

    图 2  Cu@MIL-101、Co@MIL-101和CuCo@MIL-101(n(Cu)∶n(Co)=3∶7)催化剂催化氨硼烷水解制氢图[41]

    Figure 2  Plots of time versus volume of hydrogen generated from ammonia borane(AB) hydrolysis catalyzed by the Cu@MIL-101, Co@MIL-101, and CuCo@MIL-101(n(Cu)∶n(Co)=3∶7) catalysts[41]

    图 3  (a) CuO、NiO、Co3O4、CuO-NiO和CuO-NiO/Co3O4催化氨硼烷水解制氢反应性能图,(b)各个催化剂的TOF值[53]

    Figure 3  (a)Plots of molar ratio of hydrogen to NH3BH3 versus time for CuO, NiO, Co3O4, CuO-NiO and CuO-NiO/Co3O4 samples and (b) their corresponding TOF[53]

    图 4  催化剂(a)1/500Pt+Ni/CNT和(b)1/1000Pt+Ni/CTF的HAADF-STEM图;(c)CNT和(d)CTF作为载体的Pt修饰的5% Ni催化剂室温下催化氨硼烷水解制氢性能;(e)不同催化剂以Ni为基准的TOF值;(f)以Pt为活性中心的TOF值[56]

    Figure 4  HAADF-STEM images of (a)1/500Pt+Ni/CNT, and (b)1/1000Pt+Ni/CTF. Hydrogen generation from aqueous NH3BH3 in the presence of Pt-modified 5% Ni catalysts at room temperature: (c)CNT and (d)CTF supported catalysts. (e)Comparison of TOFs among different catalysts based on Ni. (f)TOFs were calculated based on the Pt-centred active site[56]

    图 5  Ni2P催化氨硼烷水解能垒变化图[68]

    Figure 5  Plot of energy changes versus reaction coordinate calculated for Ni2P-catalyzed hydrolysis of AB[68]

    图 6  不同载体负载Rh催化氨硼烷水解制氢TOF值的比较,(a)高Rh负载量,(b)低Rh负载量[72]

    Figure 6  Comparison of TOF values of rhodium nanoparticles supported on different oxides at (a) high and (b) low rhodium loadings of catalysts used in hydrogen generation from the hydrolysis of ammonia borane[72]

    图 7  Cu2Ni1@MIL-101、MIL-101和CuNi NPs催化氨硼烷水解制氢[94]

    Figure 7  Hydrogen generation from the hydrolysis of AB catalyzed by Cu2Ni1@MIL-101, MIL-101 and CuNi NPs[94]

    表 1  不同催化剂催化氨硼烷水解制氢活性

    Table 1.  The activities of different catalysts for H2 production from ammonia borane hydrolysis

    催化剂Catalyst 转换频率TOF(molH2/(molcat·min)) 参考文献Reference
    Ag0/SiO2-CoFe2O4 264 [21]
    Ru-Rh@PVP 386 [34]
    Ni/ZIF-8 85.7 [37]
    Cu0.8Co0.2O-GO 70 [46]
    Cu0.8Ni0.1Co0.1 @MIL-101 72.1 [52]
    CuO-NiO/Co3O4 79.1 [53]
    Rh25Co75@ZIF-67 100.21 [60]
    CoP 72.2 [67]
    Ni2P 40.4 [68]
    Ni0.7Co1.3P 58.4 [69]
    Ni0.7Co1.3P/GO 153.9 [69]
    Rh0/CeO2 2010 [72]
    Ni0.9Mo0.1/graphene 66.7 [78]
    Pd/MCN 125 [81]
    Pd74Ni26/MCN 246.8 [81]
    Ru/MIL-96(Al) 231 [98]
    Ru/MIL-53(Cr) 260.8 [100]
    Ru/MIL-53(AL) 266.9 [100]
    Pt58Ni33Au9 496 [101]
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  104
  • HTML全文浏览量:  28
文章相关
  • 发布日期:  2021-02-10
  • 收稿日期:  2020-08-04
  • 接受日期:  2020-10-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章