阴离子印迹聚合物的制备及其应用研究进展

徐峰 张坤 阴凤琴 徐斐 庞雨萱 陈诗婷

引用本文: 徐峰, 张坤, 阴凤琴, 徐斐, 庞雨萱, 陈诗婷. 阴离子印迹聚合物的制备及其应用研究进展[J]. 应用化学, 2021, 38(2): 123-135. doi: 10.19894/j.issn.1000-0518.200220 shu
Citation:  Feng XU, Kun ZHANG, Feng-Qin YIN, Fei XU, Yu-Xuan PANG, Shi-Ting CHEN. Research Progress in Preparation and Application of Anion Imprinted Polymers[J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 123-135. doi: 10.19894/j.issn.1000-0518.200220 shu

阴离子印迹聚合物的制备及其应用研究进展

    通讯作者: 阴凤琴, E-mail: fqyin1104@163.com
  • 基金项目:

    国家自然科学基金 31671934

    “十三五”国家重点研发计划 2017YFC1600603

摘要: 离子印迹聚合物是利用印迹技术对模板离子进行印迹、聚合进而得到能够选择性吸附该离子的一种特殊聚合物。目前的报道大多是阳离子印迹聚合物,因为阴离子模板结构更复杂多样且电荷尺寸比更小,致使阴离子印迹聚合物的发展相对滞后。为能更有效地指导阴离子印迹聚合物的制备,本文概述了阴离子印迹聚合物的发展现状,介绍了与不同阴离子有相互作用的功能单体类型(含氨基、季铵基、氮杂环、羧基结构)以及基于上述单体制备的阴离子印迹聚合物吸附性能等,综述了阴离子印迹聚合物的制备方法与合成策略及其在电化学检测和荧光传感等分析化学领域的应用,总结了当前阴离子印迹聚合物制备过程中存在的问题,展望了未来的研究方向。

English

  • 离子印迹技术(Ion Imprinting Technology,IIT)是分子印迹技术的一个分支,其灵感来源于天然受体和配体之间相互作用[1-2]。离子印迹技术是将传统的分子模板替换为离子,利用氢键、配位键和共价键等作用与功能单体结合,在一定条件下形成具有特定空间结构和能够选择性吸附分离目标离子材料制备的新技术。在1972年,Wulff和Klotz等[3-4]采用IIT制备出世界上第一个离子印迹聚合物(Ion Imprinted Polymer,IIP)以来,新型IIP的合成和应用就引起国内外学者的广泛关注,并得到了极大的发展[5]。IIP的制备主要分为3个步骤:首先模板离子与功能单体在一定环境中结合形成主客体配合物;然后通过交联剂反应形成交联聚合物;最后洗脱剂脱除模板离子后得到具有特异性识别位点的三维空穴离子印迹聚合物。属于钥匙-锁模型的阴离子印迹聚合物(见图 1[6])中功能单体,对模板离子的强亲和力以及印迹过程形成与模板大小和形状相匹配的特定空穴[7],使其保留了如同分子印迹聚合物的构效预知性、特异识别性和广泛适用性等优点[8-9]

    图 1

    图 1.  阴离子印迹聚合物制备流程[6]
    Figure 1.  Preparation process of anion imprinted polymer[6]

    目前的报道大多介绍的是阳离子模板印迹聚合物,如Cd(Ⅱ)、Pb(Ⅱ)、Ni(Ⅱ)、Co(Ⅱ)、Nd(Ⅲ)和Dy(Ⅲ)等阳离子[10-16],而关于阴离子印迹聚合物的综合报道则相对较少。其发展受到一定限制[17-18]的原因是多方面的:阴离子的电荷尺寸比相对阳离子小得多[19-20];不同于阳离子球结构的单一性,阴离子的结构具有多样性,如NO3-为平面三角形结构、As(Ⅴ)阴离子为四面体结构等,这导致阴离子印迹聚合物中明确的识别位点的建立变得十分困难;另外当前报道的阴离子印迹聚合物的制备方法中采用纯有机相合成的相对较多,而多数阴离子是水溶性的,印迹合成环境与吸附环境的差异性即溶剂效应可能会影响阴离子印迹聚合物的性能[1, 21-22]。本文综合归纳了与各种常见对阴离子有吸附结合作用的功能单体类型(含氨基、季铵基、氮杂环、羧基结构),同时介绍了阴离子印迹聚合物的制备方法和吸附性能及其在阴离子检测和传感等方面的应用,总结了当前阴离子印迹聚合物制备过程中存在的不足,对未来的研究方向进行了展望。

    功能单体是提供特定功能基团的单体,一般为小分子物质,且常带有双键、环氧键等易于交联接枝的官能团[23-24]。与较为常见的金属阳离子相比,阴离子的种类也不少,包括非金属阴离子如CO32-、NO3-、PO43-和ClO4-,卤素离子以及金属含氧酸根阴离子如AsO2-、AsO43-、Cr2O72-和ReO4-[19, 25-27]。而与这些阴离子有相互作用的功能单体按所含官能团特点主要分为氨基类、季铵基类、氮杂环类和羧基类单体。

    胺是最常见的氨基化合物,可看作是氨的烃基衍生物。根据氨基基团内所含氢原子个数不同,可分为伯胺、仲胺和叔胺[28]。胺与氨相似,都具有碱性,其能与阴离子发生相互作用主要是由于N原子上的未共用电子对能与质子结合而带有正电荷,从而与带负电的阴离子通过静电作用结合。如Velempini等[29]利用含伯胺的功能单体乙二胺(EDA)接枝于羧甲基纤维素后通过环氧氯丙烷交联制备重铬酸根(Cr2O72-)离子印迹聚合物,模板与单体通过静电相互作用实现了对Cr2O72-较好的吸附效果。Shen等[30]使用EDA为功能单体合成了一系列高氯酸根(ClO4-)磁性IIP(Fe3O4@IIPs,见图 2)。当吸附环境为酸性时(pH=3),Fe3O4@IIPs对ClO4-的最大吸附容量可达到108.9 mg/g,印迹因子为1.8;IIP对几种常见共存阴离子(CrO42-、H2PO4-、NO3-、MnO4-和I-)的选择性因子均大于5.9,这除了静电相互作用也归功于印迹空腔的几何效应。

    图 2

    图 2.  nFe3O4@IIP的制备流程示意

    (a)Fe3O4的合成;(b)模板和功能单体的预聚合;(c)nFe3O4@IIP的合成[30]

    Figure 2.  Schematic diagram of the preparation process of nFe3O4@IIP

    (a) synthesis of Fe3O4; (b) pre-polymerization of template and functional monomer; (c) synthesis of nFe3O4@IIP [30]

    氨基硅烷类单体是目前一种较为常用的氨基功能单体,包括氨丙基三乙氧基硅烷(APTES)[31]、3-(2-氨基乙基氨基)丙基三甲氧基硅烷(AAPTS)[32]、3-[2-(2-氨基乙基氨基)乙基氨基]丙基-三甲氧基硅烷(AAAPTS)[33],因能够较方便地接枝于含羟基载体材料表面而有着广泛的应用[34-36]。氨基硅烷单体中质子化的N可与阴离子发生静电吸引,而用于阴离子印迹聚合物的制备,如Huang等[37]以AAPTS修饰氧化石墨烯介孔二氧化硅纳米片,并采用表面印迹技术制备铬离子印迹聚合物,其对Cr(Ⅵ)的吸附量高达438.1 mg/g。Fan等[38]认为单体中质子化的氨基与H2AsO4-或HAsO42-形成配位结合,其采用AAPTS通过环氧氯丙烷交联制备了As(Ⅴ)表面离子印迹氨官能化硅胶吸附剂,以此制备的印迹聚合物对As(Ⅴ)的最大静态吸附容量为16.1 mg/g,印迹因子大于4.0,具有较好的吸附性能与印迹因子。

    含脲基官能团物质亦属于氨基类功能单体,包括脲类和硫脲类化合物[39-40],如3-脲基丙基三乙氧基硅烷(UPTES)[41]、1-烯丙基-2-硫脲(AT)[42]。单体结构中的硫脲基团与水中的磷酸根、硝酸根等含氧酸根阴离子可形成环状氢键而产生结合作用[41-43],因而可作为含氧酸根阴离子的功能单体制备阴离子印迹聚合物[44-45],如Kugimiya等[42]使用AT作为功能单体,有机分子磷酸二苯酯为模板制备印迹聚合物,对磷酸盐的吸附总量为300 μmol,最高亲和力结合位点的结合常数估计为10.3 μmol/L;同时相对于卤素离子、NO2-和NO3-,IIP对磷酸根离子有较高的选择性。

    季铵基类功能单体是铵离子的4个氢都被烃基取代后形成的季铵阳离子盐,性质类似于铵盐,大多数易溶于水且溶液导电,并可在较宽pH范围内保持正电状态,其中较常见的有甲基丙烯酰氧基乙基三甲基氯化铵(DMC)[46]、4-(乙烯基苄基)三甲基氯化铵(ClVBTA)[47]、缩水甘油基三甲基氯化铵(GTC)[48]、3-氯-2-羟丙基三甲基氯化铵(CHPTAC)[49]、(3-丙烯酰胺丙基)三甲基氯化铵(ATA)[50]和1-烯丙基-3-甲基咪唑溴(AMB)等咪唑鎓化合物[51]。其作为阴离子印迹聚合物功能单体主要通过阴离子交换机制或氢键作用与阴离子实现结合,Xi等[52]以AMB为功能单体,KH2PO4为模板合成印迹聚合物,在35 ℃下对P(Ⅴ)阴离子吸附量可达78.88 mg/g,印迹因子为2.3且在竞争离子SO42-存在下依然有较明显的选择性。

    同样,利用阴离子SCN-可与Cl-或OH-进行离子交换作用,Guo等[53]采用不同功能结构的单体DMC和2-(三氟甲基)丙烯酸,通过酰胺化反应于碳微球载体(CMS)上制备了表面印迹聚合物(MIP-CMS)。研究发现,DMC单体与全氟辛烷磺酸盐(PFOS)的静电相互作用利于印迹聚合物吸附和识别目标物,MIP-CMS对PFOS的吸附容量为71.22 mg/g,显著高于NIP-CMS(41.22 mg/g),可见季铵基类功能单体的存在显著提高了MIP-CMS与PFOS的结合能力。

    常见的含氮杂环单体包括吡啶类和咪唑类化合物,如2-乙烯基吡啶(2-VP)[54]、4-乙烯基吡啶(4-VP)[55]、1-乙烯基咪唑(1-VI)[56]等。因杂环结构上的N原子易被质子化带正电与阴离子形成结合,因此可作为阴离子印迹聚合物的功能单体,如Ren等[54]分别使用包括酸性、中性、碱性等8种功能单体,以Cr2O72-为模板通过本体聚合法在丙酮中合成离子印迹聚合物(Cr(Ⅵ)-IIP)。与酸性或中性单体相比,碱性单体尤其是4-VP制备的印迹聚合物结构会更稳定;且Cr(Ⅵ)特定结合腔协同促使了Cr(Ⅵ)-IIP有较高的吸附容量(338.73 mg/g)。另外,含有杂环的类冠醚结构单体也有报道[57],主要由于环状结构化合物与靶分子或离子存在合适大小的环而选择性地识别靶分子或离子,如Fang等[58]通过多步反应合成新型环状功能单体(CFM)制备As(Ⅲ)离子印迹聚合物(As(Ⅲ)-IIP),并发现对As(Ⅲ)的吸附量高达55 mg/g,远高于相同吸附条件下非环状功能单体印迹聚合物的吸附能力(25 mg/g)。As(Ⅲ)-IIP对As(Ⅲ)的高容量和高选择性归因于CFM的“大环效应” [59]。通过尺寸匹配和静电双重作用,具有带正电荷的咪唑环和合适尺寸环的CFM对含氧阴离子表现出很强的亲和力。

    目前,羧基类功能单体主要为甲基丙烯酸(MAA),其上的羧基可与阴离子形成氢键结合作用[60]。如Mustafai等[61]采用MAA和1-VI双功能单体通过沉淀聚合得到As(Ⅲ)离子印迹聚合物,对As(Ⅲ)去除率可达95%以上;且与其它报道相比,该聚合物对真实样品中As(Ⅲ)的检测限可以低至1.0 μg/L。类似地,Alizadeh等[62]以MAA为功能单体,亚砷酸钠为模板制备了As(Ⅲ)离子印迹聚合物,并认为印迹聚合物与As(Ⅲ)离子可以形成双齿螯合配位键而结合。同样因MMA中的羧基可与P(Ⅴ)阴离子产生相互作用,Alizadeh等[63]在十六烷基三甲基溴化铵分子稳定的水包油乳液中,利用MAA功能单体聚合制备磷酸氢根阴离子印迹聚合物(见图 3),进而将其用作电势传感器的识别元件,并表现出对P(Ⅴ)阴离子较好的能斯特响应;而非印迹基电极则相对不敏感。

    图 3

    图 3.  IIP合成方法示意图[63]
    Figure 3.  Schematic representation of IIP synthesis methodology[63]

    参照不同的依据,阴离子印迹技术可有不同的分类方法,其中比较常见的是依据模板与单体的结合方式和聚合反应体系的状态来分。模板离子和选择性好的功能单体通过共价键结合形成IIP的称之为共价法,反之为非共价法,在后续发展中也有出现两种结合方式的杂化方式[64]。共价法的主要优点是功能单体对模板具有高度的特异选择性,但一般通过化学键与模板离子结合,洗脱时需相对复杂的化学裂解方式(如酯的水解、二硫键的还原等)进行,只有几类有机化合物(如羧酸类、醛类、酮类、醇和胺类)满足上述共价法合成IIP的标准[65]。而非共价法中模板与单体主要通过氢键[66]、静电相互作用[67]、离子交换[68]和范德华力[69]等作用力相结合。因模板洗脱相对方便,非共价键合合成离子印迹材料会更容易实现,能适用于更多的阴离子模板目标物。依据聚合反应体系状态的不同进行分类,主要可以分为基于连锁聚合机理的自由基聚合法(包括本体聚合、沉淀聚合、乳液聚合和悬浮聚合)和基于逐步聚合机理的表面印迹-溶胶凝胶法[70]

    本体聚合法亦称包埋法,是制备阴离子印迹聚合物最常用的方法之一。其制备过程为首先用少量的溶剂溶解混合一定比例的模板离子、功能单体和交联剂,后采用光或热引发聚合反应制得块状聚合物,如Ritt等[71]采用本体聚合法分别使用3种单体(DMC、AT和硫脲)制备了磷酸根离子印迹聚合物。实验发现随着模板∶单体物质的量比增加,以DMC为单体的印迹聚合物表面趋于光滑和均匀,孔径增大;对磷酸根吸附容量随之增加,最高为28 mg/g。本体聚合法虽然常用,但这种放热聚合方式需要12~24 h才能完成[72-74],且获得的印迹聚合颗粒具有宽范围的相对分子质量和粒径,模板洗脱困难、传质速率低以及印迹位点分布不均匀且研磨后易遭到破坏等缺点[10, 75]

    沉淀聚合法与本体聚合法相比,省去了后续研磨和过筛等步骤,可直接得到具有足够控制产物形态的聚合物微球,因不需要稳定剂或其他添加剂,是目前最简便和有效的方法之一[76]。如陶晋飞[77]分别使用3种制备方法并选择多种不同单体,以PtCl62-为模板离子制备了铂离子印迹聚合物,并发现以AT为功能单体进行沉淀聚合得到的IIP形成了明显的印迹空穴,对PtCl62-的吸附量为8.34 mg/g且印迹因子最高(1.72)。另外使用极性非质子溶剂作为致孔剂,能够保留模板与单体之间的非共价相互作用,如Dakova等[78]采用沉淀聚合中的分散聚合方式并比较发现,在乙腈中合成的As(Ⅴ)离子印迹聚合物呈现较为规整的微球状,且在其它阴离子存在下对As(Ⅴ)具有良好的特异性吸附。

    将功能单体、模板离子和交联剂完全溶于有机溶剂,后加入溶有乳化剂的水,搅拌乳化后交联聚合可得到粒径较为均一的球形聚合物[79]。该方法通常有O/W体系和W/O/W多相乳液聚合体系,制得的离子印迹颗粒可小至纳米级,大至数百微米,且比表面积较大,是制备金属离子印迹聚合物的基本方法之一[80]。在乳液反应体系中固体质量分数即使高达60%,因水和乳胶颗粒之间缺乏相互作用,反应混合物的粘度也不会显著增加[8, 81-82]。如Zhu等[83]采用W/O/W乳液聚合法,使用两种功能单体1, 12-十二烷二醇-O, O′-二苯基-膦酸和4-VP获得As(Ⅴ)-Cr(Ⅲ)离子共印迹聚合物,其比表面积为309.2 m2/g,选择性相关系数(As(Ⅴ)/Cd(Ⅱ))高达22.0。而为提高固体乳胶颗粒在混合物中的稳定性,Jalilian等[84]采用Pickering乳液聚合制备核壳型疏水磁性As(Ⅲ)离子印迹聚合物,其颗粒尺寸均一可控,比表面积可达233 m2/g,吸附As(Ⅲ)离子的印迹因子为6.3,在其它金属离子存在下依然具有较好的As(Ⅲ)选择性。乳液聚合中分散介质为水, 尽量避免了有机溶剂的使用, 更为绿色环保;然而使用该法会带来聚合物刚性差、重复利用性低以及乳化剂难清洗等问题[85]

    悬浮聚合常指以水为分散介质,在有机相中形成正相悬浮聚合制备印迹聚合物的方法。由于交联剂与水溶性功能单体难以发生无规共聚,且模板离子在连续水相中的转移会导致印迹效果不佳,因此很难用正相悬浮聚合制备IIP。而反相悬浮聚合与正相悬浮聚合相对,是将极性较大的单体以小液滴状悬浮在油溶性介质中聚合,如徐锐等[86]采用反相悬浮聚合法在含分散剂的环已烷中,以溶有SCN-、DMC单体及交联剂N, N′-亚甲基双丙烯酰胺的水溶液为分散相构成反相悬浮聚合体系,在水相液滴中使DMC发生交联生成微米级离子印迹微球,其对SCN-具有很高的吸附容量(192 mg/g)和特异的识别选择性。此法还可通过调节有机相与水相的体积比和搅拌速度实现制备粒径均一、形貌可控、比表面积不同的IIP[87]

    表面印迹法是在载体颗粒表面进行印迹聚合的方法。功能基团和印迹空穴均分布在较均匀的球形微粒表面,以此制备的印迹聚合物具有较小的传质阻力,利于模板离子的去除和吸附,实现了聚合物与目标模板离子之间快速的结合与分离[88]。该法也常与基于逐步聚合机理的溶胶凝胶法联用,合成步骤简单且条件温和,所用试剂毒性较低[89]。如Fallah等[90]采用表面印迹技术和溶胶凝胶法连用,用模板MoO42-和功能单体异烟酸(IN)及硅胶载体合成了Mo(Ⅵ)印迹聚合物(见图 4)。其印迹位点位于IIP表面,利于正负电荷静电作用。

    图 4

    图 4.  钼酸根离子印迹聚合物的合成方案[90]
    Figure 4.  Synthesis scheme of molybdate ion-imprinted polymer[90]

    吸附MoO42-,环境pH影响金属离子的化学形态和聚合物表面电荷,对吸附能力有较为明显的影响。Roy等[91]通过表面印迹技术和溶胶凝胶法,以As(Ⅲ)/As(Ⅴ)为模板离子,半胱氨酸衍生物修饰ZnS掺杂的TiO2纳米颗粒作为功能单体,分别用3种方法(传统聚合法、接枝到法和接枝于法[92])制备了As(Ⅲ)/As(Ⅴ)离子印迹聚合物。其中属于表面印迹法的接枝于法得到的印迹聚合物结构稳定性较高,对As(Ⅲ)和As(Ⅴ)的吸附容量分别可达151.0和130 mg/g。又如Shi等[93]通过两种方法的结合在纳米SiO2载体表面接枝AAPTS制备了亚硒酸根离子印迹聚合物(Se(Ⅳ)-IIPs)。单体中质子化氨基和模板之间的强静电相互作用和通过表面印迹形成印迹空腔使Se(Ⅳ)-IIPs具有较高的化学稳定性和吸附效率,在各种阴、阳离子存在下对SeO32-也具有优异的选择性。

    阴离子印迹聚合物的应用:1)直接应用,即对前面提及的对水体环境和人类健康有危害的各种阴离子的吸附或去除。目前,各种阴离子印迹聚合物的实际应用越来越倾向于开发更加简易高效的洗脱与分离操作,如引入磁性物质,如Hu等[94]通过一锅溶剂热法合成了四亚乙基五胺(TEPA)功能化的纳米Fe3O4磁性复合材料,在不降低吸附能力的同时,磁性纳米颗粒的存在利于吸附完成后的分离与纯化;2)低浓度目标离子的检测与定量方面的应用,如与分析仪器连用、荧光传感、电化学感测等。

    随着样品预处理策略的发展,使用具有更高选择性的新型萃取材料极大地提高了复杂样品分析的灵敏度。阴离子印迹聚合物因对目标物具有良好的识别和选择性,常在进行仪器分析时对样品进行分离和测定[95-96]。如Tsoi等[97]分别利用单体1-VI,4-VP和苯乙烯制备的3种砷阴离子印迹聚合物(As-IIPs),与非印迹聚合物相比,基于1-VI的As-IIPs在23种竞争离子中表现出对As离子的出色识别能力,静态吸附容量在0.048~4.925 μmol/g之间。以As-IIP填充的固相萃取装置具有较宽的工作pH;检测限和定量限分别降至0.025 μmol/L和0.083 μmol/L。Neolaka等[98]应用沉淀聚合技术制备Cr(Ⅵ)印迹聚合物,并将聚合物置于填充柱形成SPE系统,对Cr(Ⅵ)的萃取回收率高达95.89%。Say等[99]在聚乙烯醇水溶液中合成CN-印迹聚合物,并填充到色谱柱中与离子色谱仪连用测定CN-浓度。该色谱测定具有较高的选择性,足以去除含有干扰离子(SCN-、S2-、Cl-、NO3-和SO42-)的基质中的氰化物。

    传统的重金属吸附剂在吸附完成后通常需要滴定等方法来检测剩余液体中重金属的浓度,进而计算出吸附容量。近年的研究发现,当模板与含有荧光物质的印迹聚合物结合前后,荧光物质会因电子跃迁而产生荧光猝灭效应,因而可通过结合前后IIP的荧光强度变化定量测定目标物浓度[100-101]。如Zhang等[102]在以ZnS量子点(QDs)为核的介孔硅表面上接枝功能单体AAPTS合成Cr(Ⅵ)离子印迹聚合物,进而以此制备荧光传感器(QDs-IIP),能快速灵敏地检测Cr(Ⅵ),检测限为5.48 μg/L(见图 5)。与荧光传感类似,Jinadasa等[103]采用双功能单体1-VI和APTES制备基于Mn掺杂ZnS量子点的表面砷离子印迹聚合物,并用作选择性室温磷光传感探针。该探针因良好的印迹因子(As(Ⅲ): 151.5, As(Ⅴ): 91.3)和猝灭效应,具有对无机总砷的高选择性和检测稳定性,检测限和定量限分别可达8.9和29.6 μg/kg,并与分析仪器测定结果无显著差异,可实际应用于食品和生物样品中痕量砷的监测。利用这种QDs-IIP的荧光或磷光传感器来检测环境水中有毒阴离子,是阴离子印迹聚合物在检测方面的巧妙应用。

    图 5

    图 5.  (a) QDs-IIP和(b) QDs-NIP在不同Cr(Ⅵ)浓度下的荧光光谱(插图是Cr(Ⅵ)浓度与相对荧光强度之间的线性曲线)[102]
    Figure 5.  Fluorescence spectra of (a) QDs-IIP and (b) QDs-NIP at different Cr(Ⅵ) concentrations(The illustration is the linear curve between Cr(Ⅵ) concentration and relative fluorescence intensity)[102]

    电化学传感是基于待测物的电化学性质并将待测物化学量转变成电学量进行传感检测的一种技术[104],该技术具有样品预处理用量少、易于分析、便携耐用的优点[105],因此,阴离子印迹聚合物用于电化学传感检测得到一定的研究,如Alizadeh等[106]通过非共价法设计合成氰化物离子印迹聚合物,以其制作成碳糊基的氰化物离子选择性电势传感器,并发现VP和MMA的存在会使电极有更好的动态线性范围和校准曲线斜率,对传感器的效率有积极影响。Alizadeh等[107]以磷酸为模板,在乙腈和水混合相制备磷酸氢根离子印迹聚合物,并进一步通过修饰电极用作碳糊电势传感器的识别元件。该修饰电极对磷酸氢根阴离子表现出能斯特响应,动态线性范围为1×10-5~1×10-1 mol/L,响应时间为25 s,检测极限为4.0×10-6 mol/L,是良好的磷酸根离子选择性电势传感器。

    阴离子印迹聚合物已有的报道虽然不多,但鉴于阴离子同样会造成水体污染,其逐渐受到越来越多研究人员的关注。目前阴离子印迹聚合物的制备和应用仍存在一些不足,如饱和吸附量小、热稳定性差、工业应用领域小等。针对此问题,在今后的研究和应用工作中,应该着重于以下几个方面进行:1)筛选或设计合成新型功能单体,如烯丙基硫醇、巯基丙酸等含巯基类单体[108-110],从而扩展功能单体的范围以利于制备高性能的阴离子印迹聚合物;2)采用多种功能单体共印迹等方式优化阴离子印迹聚合物的微观结构来提高其性能;3)选用更低成本、更高稳定性的载体材料;4)为保持印迹合成环境与吸附环境的一致性,更好地探索目标物的结合机理和识别,制备方法上可由油相倾向水相合成方向探索,发展“绿色化学”的印迹聚合物,并寻找改善印迹聚合物中阴离子转移动力学的方法。

    总的来说,未来阴离子印迹聚合物的研究和应用有较大的发展潜力,需要更多领域的专家和学者的关注, 只有这样才能全面地开发其功能和用途。


    1. [1]

      LU J, QIN Y, WU Y. Recent advances in ion-imprinted membranes: separation and detection via ion-selective recognition[J]. Environ Sci Water Res Technol, 2019, 5(10):  1626-1653. doi: 10.1039/C9EW00465C

    2. [2]

      BELBRUNO J J. Molecularly imprinted polymers[J]. Chem Rev, 2019, 119(1):  94-119. doi: 10.1021/acs.chemrev.8b00171

    3. [3]

      WULFF G, SARHAN A A. The use of polymers with enzyme-analogous structures for the resolution of racemates[J]. Angew Chem Int Ed, 1972, 11:  341-346.

    4. [4]

      TAKAGISHI T, KLOTZ I M J B. Macromolecule-small molecule interactions; introduction of additional binding sites in polyethyleneimine by disulfide cross-linkages[J]. Biopolymers, 1972, 11(2):  483-491. doi: 10.1002/bip.1972.360110213

    5. [5]

      HUANG Y, WANG R. Review on fundamentals, preparations and applications of imprinted polymers[J]. Curr Org Chem, 2018, 22(16):  1600-1618. doi: 10.2174/1385272822666180711120045

    6. [6]

      MALIK M I, SHAIKH H, MUSTAFA G. Recent applications of molecularly imprinted polymers in analytical chemistry[J]. Sep Purif Rev, 2018, 48(3):  179-219.

    7. [7]

      PINHEIRO S C, DESCALZO A B, RAIMUNDO I M. Fluorescent ion-imprinted polymers for selective Cu(Ⅱ) optosensing[J]. Anal Bioanal Chem, 2012, 402(10):  3253-3260. doi: 10.1007/s00216-011-5620-0

    8. [8]

      HANDE P E, SAMUI A B, KULKARNI P S. Highly selective monitoring of metals by using ion-imprinted polymers[J]. Environ Sci Pollut Res, 2015, 22(10):  7375-7404. doi: 10.1007/s11356-014-3937-x

    9. [9]

      SHAKERIAN F, KIM K-H, KWON E. Advanced polymeric materials: synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions[J]. Trends Anal Chem, 2016, 83:  55-69. doi: 10.1016/j.trac.2016.08.001

    10. [10]

      LV X, LIU Y, ZHANG J. Study on the adsorption behavior of glutaric acid modified Pb(Ⅱ) imprinted chitosan-based composite membrane to Pb(Ⅱ) in aqueous solution[J]. Mater Lett, 2019, 251(SEP.15):  172-175.

    11. [11]

      ZHOU Z, KONG D, ZHU H. Preparation and adsorption characteristics of an ion-imprinted polymer for fast removal of Ni(Ⅱ) ions from aqueous solution[J]. J Hazard Mater, 2018, 341:  355-364. doi: 10.1016/j.jhazmat.2017.06.010

    12. [12]

      YUAN G, TU H, LIU J. A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(Ⅱ) from aqueous solutions[J]. Chem Eng J, 2018, 333:  280-288. doi: 10.1016/j.cej.2017.09.123

    13. [13]

      ZHENG X, ZHANG Y, ZHANG F. Dual-template docking oriented ionic imprinted bilayer mesoporous films with efficient recovery of neodymium and dysprosium[J]. J Hazard Mater, 2018, 353:  496-504. doi: 10.1016/j.jhazmat.2018.04.022

    14. [14]

      LU J, WU Y, LIN X. Anti-fouling and thermosensitive ion-imprinted nanocomposite membranes based on grapheme oxide and silicon dioxide for selectively separating europium ions[J]. J Hazard Mater, 2018, 353:  244-253. doi: 10.1016/j.jhazmat.2018.04.014

    15. [15]

      杨普, 曹慧, 徐斐. 核壳型离子印迹聚合物的制备与应用[J]. 工业微生物, 2019,49,(5): 17-23. YANG P, CAO H, XU F. Preparation and application of core-shell ion imprinted polymer[J]. Ind Microbiol, 2019, 49(5):  17-23.

    16. [16]

      YANG P, CAO H, MAI D. A novel morphological ion imprinted polymers for selective solid phase extraction of Cd(Ⅱ): preparation, adsorption properties and binding mechanism to Cd(Ⅱ)[J]. React Funct Polym, 2020, 151:  104569-104578. doi: 10.1016/j.reactfunctpolym.2020.104569

    17. [17]

      FU J, CHEN L, LI J. Current status and challenges of ion imprinting[J]. J Mater Chem A, 2015, 3(26):  13598-13627. doi: 10.1039/C5TA02421H

    18. [18]

      PERERA R, ASHRAF S, MUELLER A. The binding of metal ions to molecularly-imprinted polymers[J]. Water Sci Technol, 2017, 75(7/8):  1643-1650.

    19. [19]

      WU X. Molecular imprinting for anion recognition in aqueous media[J]. Microchim Acta, 2011, 176(1/2):  23-47.

    20. [20]

      VILAR R N, BALLESTER P. Recognition of anions[J]. Springer Berlin, 2008, 129:  175-200.

    21. [21]

      SPELTINI A, SCALABRINI A, MARASCHI F. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: a review[J]. Anal Chim Acta, 2017, 974:  1-26. doi: 10.1016/j.aca.2017.04.042

    22. [22]

      JINADASA K K, PEÑA-VÁZQUEZ E, BERMEJO-BARRERA P. New adsorbents based on imprinted polymers and composite nanomaterials for arsenic and mercury screening/speciation: a review[J]. Microchem J, 2020, 156:  104886-104894. doi: 10.1016/j.microc.2020.104886

    23. [23]

      CHEN L, WANG X, LU W. Molecular imprinting: perspectives and applications[J]. Chem Soc Rev, 2016, 45(8):  2137-2211. doi: 10.1039/C6CS00061D

    24. [24]

      于劲松, 徐斐, 曹慧. 电导率法筛选镉离子印迹聚合物功能单体[J]. 工业微生物, 2020,50,(3): 43-48. YU J S, XU F, CAO H. Screening of functional monomers of cadmium ion imprinted polymer by conductivity method[J]. Ind Microbiol, 2020, 50(3):  43-48.

    25. [25]

      LANGTON M J, SERPELL C J, BEER P D. Anion recognition in water: recent advances from a supramolecular and macromolecular perspective[J]. Angew Chem Int Ed, 2016, 55(6):  1974-1987. doi: 10.1002/anie.201506589

    26. [26]

      KONG D, ZHANG F, WANG K. Fast removal of Cr(Ⅵ) from aqueous solution using Cr(Ⅵ)-imprinted polymer particles[J]. Ind Eng Chem Res, 2014, 53(11):  4434-4441. doi: 10.1021/ie403484p

    27. [27]

      LOU Z, HUANG M, CUI J. Copolymers of vinylimidazolium-based ionic liquids and divinylbenzene for adsorption of TcO4- or ReO4-[J]. Hydrometallurgy, 2019, 190:  105147-105155. doi: 10.1016/j.hydromet.2019.105147

    28. [28]

      KHAN F, ARATSU F, KOBAYASHI S. A simple strategy for robust preparation and characterisation of hydrogels derived from chitosan and amino functional monomers for biomedical applications[J]. J Mater Chem B, 2018, 6(31):  5115-5129. doi: 10.1039/C8TB00865E

    29. [29]

      VELEMPINI T, PILLAY K, MBIANDA X Y. Epichlorohydrin crosslinked carboxymethyl cellulose-ethylenediamine imprinted polymer for the selective uptake of Cr(Ⅵ)[J]. Int J Biol Macromol, 2017, 101:  837-844. doi: 10.1016/j.ijbiomac.2017.03.048

    30. [30]

      SHEN H, SUN M, HU M. Design and controllable synthesis of ethylenediamine-grafted ion imprinted magnetic polymers for highly selective adsorption to perchlorate[J]. RSC Adv, 2018, 8(52):  29928-29938. doi: 10.1039/C8RA06085A

    31. [31]

      BOYACI E, CAGIR A, SHAHWAN T. Synthesis, characterization and application of a novel mercapto- and amine-bifunctionalized silica for speciation/sorption of inorganic arsenic prior to inductively coupled plasma mass spectrometric determination[J]. Talanta, 2011, 85(3):  1517-1525. doi: 10.1016/j.talanta.2011.06.021

    32. [32]

      CHEN L, LIANG H, XING J. Synthesis of multidentate functional monomer for ion imprinting[J]. J Sep Sci, 2020, 43(7):  1356-1364. doi: 10.1002/jssc.201901063

    33. [33]

      FAN H T, SUN T, XU H B. Removal of arsenic(Ⅴ) from aqueous solutions using3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane functionalized silica gel adsorbent[J]. Desalination, 2011, 278(1/2/3):  238-243.

    34. [34]

      XING D Y, CHEN Y, ZHU J. Fabrication of hydrolytically stable magnetic core-shell aminosilane nanocomposite for the adsorption of PFOS and PFOA[J]. Chemosphere, 2020, 251:  126384-126393. doi: 10.1016/j.chemosphere.2020.126384

    35. [35]

      JANIK P, ZAWISZA B, TALIK E. Selective adsorption and determination of hexavalent chromium ions using graphene oxide modified with amino silanes[J]. Microchim Acta, 2018, 185(2):  117. doi: 10.1007/s00604-017-2640-2

    36. [36]

      SOTO R J, YANG L, SCHOENFISCH M H. Functionalized mesoporous silica via an aminosilane surfactant ion exchange reaction: controlled scaffold design and nitric oxide release[J]. ACS Appl Mater Interfaces, 2016, 8(3):  2220-2231. doi: 10.1021/acsami.5b10942

    37. [37]

      HUANG R, MA X, LI X. A novel ion-imprinted polymer based on graphene oxide-mesoporous silica nanosheet for fast and efficient removal of chromium (Ⅵ) from aqueous solution[J]. J Colloid Interface Sci, 2018, 514:  544-553. doi: 10.1016/j.jcis.2017.12.065

    38. [38]

      FAN H T, FAN X, LI J. Selective removal of arsenic(Ⅴ) from aqueous solution using a surface-ion-imprinted amine-functionalized silica gel sorbent[J]. Ind Eng Chem Res, 2012, 51(14):  5216-5223. doi: 10.1021/ie202655x

    39. [39]

      HELLING S, SHINDE S, BROSSERON F. Ultratrace enrichment of tyrosine phosphorylated peptides on an imprinted polymer[J]. Anal Chem, 2011, 83(5):  1862-1865. doi: 10.1021/ac103086v

    40. [40]

      BLAŽEK BREGOVIC' V, BASARIC' N, MLINARIC'-MAJERSKI K. Anion binding with urea and thiourea derivatives[J]. Coord Chem Rev, 2015, 295:  80-124. doi: 10.1016/j.ccr.2015.03.011

    41. [41]

      CHEN Y, LI D, BIE Z. Coupling of phosphate-imprinted mesoporous silica nanoparticles-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for highly efficient analysis of protein phosphorylation[J]. Anal Chem, 2016, 88(2):  1447-1454. doi: 10.1021/acs.analchem.5b04343

    42. [42]

      KUGIMIYA A, TAKEI H. Selectivity and recovery performance of phosphate-selective molecularly imprinted polymer[J]. Anal Chim Acta, 2008, 606(2):  252-256. doi: 10.1016/j.aca.2007.11.025

    43. [43]

      ABU SAMAH N, MAT ROSLI N A, ABDUL MANAP A H. Synthesis & characterization of ion imprinted polymer for arsenic removal from water: a value addition to the groundwater resources[J]. Chem Eng J, 2020, 394:  124900-124907. doi: 10.1016/j.cej.2020.124900

    44. [44]

      SHINDE S, INCEL A, MANSOUR M. Urea-based imprinted polymer hosts with switchable anion preference[J]. J Am Chem Soc, 2020, 142(26):  11404-11416. doi: 10.1021/jacs.0c00707

    45. [45]

      SHINDE S, MANSOUR M, INCEL A. High salt compatible oxyanion receptors by dual ion imprinting[J]. Chem Sci, 2020, 11(16):  4246-4250. doi: 10.1039/C9SC06508C

    46. [46]

      GAO B, CHA X, CHEN T. Designing and Preparing of acid dye surface-imprinted material for effective removal of acid dyes from water[J]. J Environ Chem Eng, 2015, 3(1):  277-285. doi: 10.1016/j.jece.2014.10.017

    47. [47]

      URBANO B F, VILLENAS I, RIVAS B L. Cationic polymer-TiO2 nanocomposite sorbent for arsenate removal[J]. Chem Eng J, 2015, 268:  362-370. doi: 10.1016/j.cej.2015.01.068

    48. [48]

      NAJIB N, CHRISTODOULATOS C. Removal of arsenic using functionalized cellulose nanofibrils from aqueous solutions[J]. J Hazard Mater, 2019, 367:  256-266. doi: 10.1016/j.jhazmat.2018.12.067

    49. [49]

      GOGOI H, LEIVISKA T, RAMO J. Production of aminated peat from branched polyethylenimine and glycidyltrimethylammonium chloride for sulphate removal from mining water[J]. Environ Res, 2019, 175:  323-334. doi: 10.1016/j.envres.2019.05.022

    50. [50]

      HOSHINO Y, JIBIKI T, NAKAMOTO M. Reversible pKa modulation of carboxylic acids in temperature-responsive nanoparticles through imprinted electrostatic interactions[J]. ACS Appl Mater Interfaces, 2018, 10(37):  31096-31105. doi: 10.1021/acsami.8b11397

    51. [51]

      SHU X, SHEN L, WEI Y. Synthesis of surface ion-imprinted magnetic microsphere for efficient sorption of perrhenate: a structural surrogate for pertechnetate[J]. J Mol Liq, 2015, 211:  621-627. doi: 10.1016/j.molliq.2015.07.059

    52. [52]

      XI Y, HUANG M, LUO X. Enhanced phosphate adsorption performance by innovative anion imprinted polymers with dual interaction[J]. Appl Surf Sci, 2019, 467/468:  135-142. doi: 10.1016/j.apsusc.2018.10.095

    53. [53]

      GUO H, LIU Y, MA W. Surface molecular imprinting on carbon microspheres for fast and selective adsorption of perfluorooctane sulfonate[J]. J Hazard Mater, 2018, 348:  29-38. doi: 10.1016/j.jhazmat.2018.01.018

    54. [54]

      REN Z, KONG D, WANG K. Preparation and adsorption characteristics of an imprinted polymer for selective removal of Cr(Ⅵ) Ions from aqueous solutions[J]. J Mater Chem A, 2014, 2(42):  17952-17961. doi: 10.1039/C4TA03024A

    55. [55]

      TAGHIZADEH M, HASSANPOUR S. Selective adsorption of Cr(Ⅵ) ions from aqueous solutions using a Cr(Ⅵ)-imprinted polymer supported by magnetic multiwall carbon nanotubes[J]. Polymer, 2017, 132:  1-11. doi: 10.1016/j.polymer.2017.10.045

    56. [56]

      JINADASA K K, PENA-VAZQUEZ E, BERMEJO-BARRERA P. Ionic Imprinted polymer solid-phase extraction for inorganic arsenic selective pre-concentration in fishery products before high-performance liquid chromatography-inductively coupled plasma-mass spectrometry speciation[J]. J Chromatogr A, 2020, 1619:  460973-460982. doi: 10.1016/j.chroma.2020.460973

    57. [57]

      DONG Z, YUAN W, LI Y. Radiation synthesis of crown ether functionalized microcrystalline cellulose as bifunctional adsorbent: a preliminary investigation on its application for removal of ReO4- as analogue for TcO4-[J]. Radiat Phys Chem, 2019, 159:  147-153. doi: 10.1016/j.radphyschem.2019.02.054

    58. [58]

      FANG L, MIN X, KANG R. Development of an anion imprinted polymer for high and selective removal of arsenite from wastewater[J]. Sci Total Environ, 2018, 639:  110-117. doi: 10.1016/j.scitotenv.2018.05.103

    59. [59]

      康仁飞. 离子印迹聚合物的合成及其选择性去除水体中钴离子和亚砷酸根离子的性能研究[D]. 南昌: 南昌航空大学, 2016.KANG R F. Synthesis of ion imprinted polymers and their selective removal of cobalt and arsenite ions in water[D]. Nanchang: Nanchang Hangkong University, 2016.

    60. [60]

      GOLKER K, OLSSON G D, NICHOLLS I A. The influence of a methyl substituent on molecularly imprinted polymer morphology and recognition-acrylic acid versus methacrylic acid[J]. Eur Polym J, 2017, 92:  137-149. doi: 10.1016/j.eurpolymj.2017.04.043

    61. [61]

      MUSTAFAI, BALOUCH, ABDULLAH. Microwave-assisted synthesis of imprinted polymer for selective removal of arsenic from drinking water by applying taguchi statistical method[J]. Eur Polym J, 2018, 109:  133-142. doi: 10.1016/j.eurpolymj.2018.09.041

    62. [62]

      ALIZADEH T, RASHEDI M. Synthesis of nano-sized arsenic-imprinted polymer and its use as As3+ selective ionophore in a potentiometric membrane electrode: part 1[J]. Anal Chim Acta, 2014, 843:  7-17. doi: 10.1016/j.aca.2014.06.052

    63. [63]

      ALIZADEH T, ATAYI K. Synthesis of hydrogen phosphate anion-imprinted polymer via emulsion polymerization and its use as the recognition element of graphene/graphite paste potentiometric electrode[J]. Mater Chem Phys, 2018, 209:  180-187. doi: 10.1016/j.matchemphys.2018.01.068

    64. [64]

      LI G, ROW K H. Recent applications of molecularly imprinted polymers (MIPs) on micro-extraction techniques[J]. Sep Purif Rev, 2017, 47(1):  1-18.

    65. [65]

      KOTROTSIOU O, KIPARISSIDES C. Water treatment by molecularly imprinted materials[M]. Nanoscale Materials in Water Purification. 2019: 179-230.

    66. [66]

      ZHU G, GAO X, WANG X. Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers[J]. J Chromatogr A, 2018, 1532:  40-49. doi: 10.1016/j.chroma.2017.11.057

    67. [67]

      HASSANPOUR S, TAGHIZADEH M, YAMINI Y. Magnetic Cr(Ⅵ) ion imprinted polymer for the fast selective adsorption of Cr(Ⅵ) from aqueous solution[J]. J Polym Environ, 2017, 26(1):  101-115.

    68. [68]

      DENG H, WEI Z, WANG X. Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(Ⅳ) as lewis acid[J]. Carbohydr Polym, 2017, 157:  1190-1197. doi: 10.1016/j.carbpol.2016.10.087

    69. [69]

      SINGH M, SINGH S, SINGH S P. Recent advancement of carbon nanomaterials engrained molecular imprinted polymer for environmental matrix[J]. Trends Environ Anal Chem, 2020, 27:  e00092. doi: 10.1016/j.teac.2020.e00092

    70. [70]

      傅骏青, 王晓艳, 李金花. 重金属离子印迹技术[J]. 化学进展, 2016,28,(1): 91-98. FU J Q, WANG X Y, LI J H. Heavy metal ion imprinting technology[J]. Prog Chem, 2016, 28(1):  91-98.

    71. [71]

      RITT C L, CHISHOLM B J, BEZBARUAH A N. Assessment of molecularly imprinted polymers as phosphate sorbents[J]. Chemosphere, 2019, 226:  395-404. doi: 10.1016/j.chemosphere.2019.03.087

    72. [72]

      MAFU L D, MAMBA B B, MSAGATI T A M. Synthesis and characterization of ion imprinted polymeric adsorbents for the selective recognition and removal of arsenic and selenium in wastewater samples[J]. J Saudi Chem Soc, 2016, 20(5):  594-605. doi: 10.1016/j.jscs.2014.12.008

    73. [73]

      CAO F, WANG L, TIAN Y. Synthesis and evaluation of molecularly imprinted polymers with binary functional monomers for the selective removal of perfluorooctanesulfonic acid and perfluorooctanoic acid[J]. J Chromatogr A, 2017, 1516:  42-53. doi: 10.1016/j.chroma.2017.08.023

    74. [74]

      DADFARNIA S, HAJI SHABANI A M, DEHGHANPOOR FRASHAH S. Synthesis and application of a nanoporous ion-imprinted polymer for the separation and preconcentration of trace amounts of vanadium from food samples before determination by electrothermal atomic absorption spectrometry[J]. J Sep Sci, 2016, 39(8):  1509-1517. doi: 10.1002/jssc.201501301

    75. [75]

      BRANGER C, MEOUCHE W, MARGAILLAN A. Recent advances on ion-imprinted polymers[J]. React Funct Polym, 2013, 73(6):  859-875. doi: 10.1016/j.reactfunctpolym.2013.03.021

    76. [76]

      PARDESHI S, SINGH S K. Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications[J]. RSC Adv, 2016, 6(28):  23525-23536. doi: 10.1039/C6RA02784A

    77. [77]

      陶晋飞. 铂(Ⅳ)和铑(Ⅲ)离子印迹聚合物的制备、性能及应用研究[D]. 昆明: 云南大学, 2012.TAO J F. Preparation, performance and application of platinum (Ⅳ) and rhodium (Ⅲ) Ion imprinted polymers[D]. Kunming: Yunnan University, 2012.

    78. [78]

      DAKOVA I, YORDNOVA T, KARADJOVA I, et al. Synthesis and characterization of As(Ⅴ)-imprinted smart polymer gel for selective adsorption of As(Ⅴ) ions[M]. International Conference on Quantum, Nonlinear, and Nanophotonics 2019(ICQNN 2019). 2019.

    79. [79]

      SUN Y, REN T, DENG Z. Molecularly imprinted polymers fabricated using janus particle-stabilized pickering emulsions and charged monomer polymerization[J]. New J Chem, 2018, 42(9):  7355-7363. doi: 10.1039/C8NJ00282G

    80. [80]

      李生芳. 以介孔材料为基底的表面离子印迹聚合物的制备及表征[D]. 西宁: 青海大学, 2017.LI S F. Preparation and characterization of surface ion imprinted polymers based on mesoporous materials[D]. Xining: Qinghai University, 2017.

    81. [81]

      QIU J, CHARLEUX B, MATYJASZEWSKI K. Controlled living radical polymerization in aqueous media homogeneous and heterogeneous systems[J]. Prog Polym Sci, 2001, 26(10):  2083-2134. doi: 10.1016/S0079-6700(01)00033-8

    82. [82]

      LIU B, ZHANG M, ZHOU C. Synthesis of monodisperse, large scale and high solid content latexes of poly(n-butyl acrylate) by a one-step batch emulsion polymerization[J]. Colloid Polym Sci, 2013, 291(10):  2385-2398. doi: 10.1007/s00396-013-2987-9

    83. [83]

      ZHU L Y, ZHU Z L, QIU Y L. Synthesis of As(Ⅴ)-Cr(Ⅲ) co-imprinted polymer and its adsorption performance for arsenate species[J]. Sep Sci Technol, 2014, 49(10):  1584-1591. doi: 10.1080/01496395.2014.893356

    84. [84]

      JALILIAN R, SHAHMARI M, TAHERI A. Ultrasonic-assisted micro solid phase extraction of arsenic on a new ion-imprinted polymer synthesized from chitosan-stabilized pickering emulsion in water, rice and vegetable samples[J]. Ultrason Sonochem, 2020, 61:  104802-104811. doi: 10.1016/j.ultsonch.2019.104802

    85. [85]

      王俊莲, 刘新宇, 谢美英. 体离子印迹材料的制备方法[J]. 化学进展, 2018,30,(7): 989-1012. WANG J L, LIU X Y, XIE M Y. Preparation of bulk ion imprinted materials[J]. Chem Prog, 2018, 30(7):  989-1012.

    86. [86]

      徐锐, 杨青, 李延斌. 反相悬浮聚合法制备硫氰酸根阴离子印迹微球及其离子识别性质[J]. 应用化学, 2015,32,(8): 931-939. XU R, YANG Q, LI Y B. Preparation of thiocyanate anion imprinted microspheres by reversed phase suspension polymerization and their ion recognition properties[J]. Chinese J Appl Chem, 2015, 32(8):  931-939.

    87. [87]

      贾伟炜, 陈振斌. 离子印迹聚合物研究进展[J]. 应用化工, 2019,48,(12): 3003-3008, 3013. JIA W W, CHEN Z B. Research progress of ion imprinted polymers[J]. Appl Chem Ind, 2019, 48(12):  3003-3008, 3013.

    88. [88]

      DU R, GAO B, MEN J. Characteristics and advantages of surface-initiated graft-polymerization as a way of "grafting from" method for graft-polymerization of functional monomers on solid particles[J]. Eur Polym J, 2020, 127:  109479-109488. doi: 10.1016/j.eurpolymj.2020.109479

    89. [89]

      张磊, 徐斐, 袁敏. 表面离子印迹聚合物的制备技术研究进展[J]. 应用化工, 2018,47,(2): 351-354, 364. ZHANG L, XU F, YUAN M. Research progress of preparation technology of surface ion imprinted polymer[J]. Appl Chem Ind, 2018, 47(2):  351-354, 364.

    90. [90]

      FALLAH N, TAGHIZADEH M, HASSANPOUR S. Selective adsorption of Mo(Ⅵ) ions from aqueous solution using a surface-grafted Mo(Ⅵ) ion imprinted polymer[J]. Polymer, 2018, 144:  80-91. doi: 10.1016/j.polymer.2018.04.043

    91. [91]

      ROY E, PATRA S, MADHURI R. A single solution for arsenite and arsenate removal from drinking water using cysteine@ZnS: TiO2 nanoparticle modified molecularly imprinted biofouling-resistant filtration membrane[J]. Chem Eng J, 2016, 304:  259-270. doi: 10.1016/j.cej.2016.06.064

    92. [92]

      GAO B, LI D, LEI Q. Preparation of high PMMA grafted particle SiO2 using surface initiated free radical polymerization[J]. J Polym Res, 2011, 18(6):  1519-1526. doi: 10.1007/s10965-010-9557-3

    93. [93]

      SHI C, DING G S, TANG A N. Synthesis and evaluation of ion-imprinted sol-gel material of selenite[J]. Anal Methods, 2017, 9(10):  1658-1664. doi: 10.1039/C6AY03286A

    94. [94]

      HU M, SHEN H, YE S. Facile preparation of a tetraethylenepentamine-functionalized nano magnetic composite material and its adsorption mechanism to anions: competition or cooperation[J]. RSC Adv, 2018, 8(19):  10686-10697. doi: 10.1039/C8RA00237A

    95. [95]

      RUTKOWSKA M, PŁOTKA-WASYLKA J, MORRISON C. Application of molecularly imprinted polymers in analytical chiral separations and analysis[J]. Trends Anal Chem, 2018, 102:  91-102. doi: 10.1016/j.trac.2018.01.011

    96. [96]

      ASGARI S, BAGHERI H, ES-HAGHI A. An imprinted interpenetrating polymer network for microextraction in packed syringe of carbamazepine[J]. J Chromatogr A, 2017, 1491:  1-8. doi: 10.1016/j.chroma.2017.02.033

    97. [97]

      TSOI Y K, HO Y M, LEUNG K S. Selective recognition of arsenic by tailoring ion-imprinted polymer for ICP-MS Quantification[J]. Talanta, 2012, 89:  162-168. doi: 10.1016/j.talanta.2011.12.007

    98. [98]

      NEOLAKA Y A B, LAWA Y, NAAT J N. A Cr(Ⅵ)-imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(Ⅵ) ions from electroplating industrial wastewater[J]. React Funct Polym, 2020, 147:  104451-104464. doi: 10.1016/j.reactfunctpolym.2019.104451

    99. [99]

      SAY R, ERSÖZ A, TVRK H. Selective separation and preconcentration of cyanide by a column packed with cyanide-imprinted polymeric microbeads[J]. Sep Purif Technol, 2004, 40(1):  9-14. doi: 10.1016/j.seppur.2003.12.021

    100. [100]

      YANG Q, LI J, WANG X. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis[J]. Biosens Bioelectron, 2018, 112:  54-71. doi: 10.1016/j.bios.2018.04.028

    101. [101]

      LU H, XU S. Dual channel ion imprinted fluorescent polymers for dual mode simultaneous chromium speciation analysis[J]. Analyst, 2020, 145(7):  2661-2668. doi: 10.1039/D0AN00098A

    102. [102]

      ZHANG M Y, HUANG R F, MA X G. Selective Fluorescence sensor based on ion-imprinted polymer-modified quantum dots for trace detection of Cr(Ⅵ) in aqueous solution[J]. Anal Bioanal Chem, 2019, 411(27):  7165-7175. doi: 10.1007/s00216-019-02100-w

    103. [103]

      JINADASA K K, PENA-VAZQUEZ E, BERMEJO-BARRERA P. Synthesis and application of a surface ionic imprinting polymer on silica-coated Mn-doped ZnS quantum dots as a chemosensor for the selective quantification of inorganic arsenic in fish[J]. Anal Bioanal Chem, 2020, 412(7):  1663-1673. doi: 10.1007/s00216-020-02405-1

    104. [104]

      ZHOU C, YANG M, LI S S. Electrochemically etched gold wire microelectrode for the determination of inorganic arsenic[J]. Electrochim Acta, 2017, 231:  238-246. doi: 10.1016/j.electacta.2017.01.184

    105. [105]

      GUMPU M B, VEERAPANDIAN M, KRISHNAN U M. Electrochemical sensing platform for the determination of arsenite and arsenate using electroactive nanocomposite electrode[J]. Chem Eng J, 2018, 351:  319-327. doi: 10.1016/j.cej.2018.06.097

    106. [106]

      ALIZADEH T, SABZI R E, ALIZADEH H. Synthesis of nano-sized cyanide ion-imprinted polymer via non-covalent approach and its use for the fabrication of a CN--selective carbon nanotube impregnated carbon paste electrode[J]. Talanta, 2016, 147:  90-97. doi: 10.1016/j.talanta.2015.09.043

    107. [107]

      ALIZADEH T, ATAYI K. Synthesis of nano-sized hydrogen phosphate-imprinted polymer in acetonitrile/water mixture and its use as a recognition element of hydrogen phosphate selective all-solid state potentiometric electrode[J]. J Mol Recognit, 2018, 31(2):  e2678. doi: 10.1002/jmr.2678

    108. [108]

      KALITA H, CHISHOLM B, BEZBARUAH A N. Novel arsenic ion-imprinted polymer: simultaneous removal As(Ⅲ) and As(Ⅴ) from water[M]. World Environmental and Water Resources Congress 2011. 2011: 3396-3401.

    109. [109]

      HAO J, HAN M J, MENG X. Preparation and evaluation of thiol-functionalized activated alumina for arsenite removal from water[J]. J Hazard Mater, 2009, 167(1/2/3):  1215-1221.

    110. [110]

      PRAMANIK K, SARKAR P, BHATTACHARYAY D. 3-Mercaptopropanoic acid modified cellulose filter paper for quick removal of arsenate from drinking water[J]. Int J Biol Macromol, 2019, 122:  185-194. doi: 10.1016/j.ijbiomac.2018.10.065

  • 图 1  阴离子印迹聚合物制备流程[6]

    Figure 1  Preparation process of anion imprinted polymer[6]

    图 2  nFe3O4@IIP的制备流程示意

    Figure 2  Schematic diagram of the preparation process of nFe3O4@IIP

    (a)Fe3O4的合成;(b)模板和功能单体的预聚合;(c)nFe3O4@IIP的合成[30]

    (a) synthesis of Fe3O4; (b) pre-polymerization of template and functional monomer; (c) synthesis of nFe3O4@IIP [30]

    图 3  IIP合成方法示意图[63]

    Figure 3  Schematic representation of IIP synthesis methodology[63]

    图 4  钼酸根离子印迹聚合物的合成方案[90]

    Figure 4  Synthesis scheme of molybdate ion-imprinted polymer[90]

    图 5  (a) QDs-IIP和(b) QDs-NIP在不同Cr(Ⅵ)浓度下的荧光光谱(插图是Cr(Ⅵ)浓度与相对荧光强度之间的线性曲线)[102]

    Figure 5  Fluorescence spectra of (a) QDs-IIP and (b) QDs-NIP at different Cr(Ⅵ) concentrations(The illustration is the linear curve between Cr(Ⅵ) concentration and relative fluorescence intensity)[102]

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  96
  • HTML全文浏览量:  27
文章相关
  • 发布日期:  2021-02-10
  • 收稿日期:  2020-07-24
  • 接受日期:  2020-11-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章