(BiO)2CO3-Bi-TiO2复合纳米纤维制备及其光催化降解抗生素

张春华 赵晓波 李跃军 孙大伟

引用本文: 张春华, 赵晓波, 李跃军, 孙大伟. (BiO)2CO3-Bi-TiO2复合纳米纤维制备及其光催化降解抗生素[J]. 应用化学, 2021, 38(1): 99-106. doi: 10.19894/j.issn.1000-0518.200203 shu
Citation:  ZHANG Chun-Hua,  ZHAO Xiao-Bo,  LI Yue-Jun,  SUN Da-Wei. Preparation of (BiO)2CO3-Bi-TiO2 Composite Nanofibers and Its Photocatalytic Degradation of Antibiotics[J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 99-106. doi: 10.19894/j.issn.1000-0518.200203 shu

(BiO)2CO3-Bi-TiO2复合纳米纤维制备及其光催化降解抗生素

    通讯作者: 赵晓波,E-mail:bcxibozhao@163.com
  • 基金项目:

    国家自然科学基金项目(No.21573003)和吉林省教育厅“十三五”科学技术研究项目(No.201638)资助

摘要: 以静电纺丝制备的TiO2纳米纤维为基质,葡萄糖为还原剂,在不同的酸碱环境中,采用一步水热法可控合成了异质结型Bi-TiO2、(BiO)2CO3-TiO2和(BiO)2CO3-Bi-TiO2复合纳米纤维光催化剂。通过X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)和光致发光光谱(PL)等对样品进行表征。以洛美沙星、环丙沙星和诺氟沙星为目标污染物,研究了TiO2及其复合纳米纤维的光催化降解性能,并探究其降解反应机理。结果表明,(BiO)2CO3-Bi-TiO2光催化活性最高,模拟太阳光照60 min,对诺氟沙星、洛美沙星和环丙沙星的降解率分别达到93.2%、97.5%和100%。

English


    1. [1] BURCH T R, SADOWSKY M J, LAPARA T M. Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids[J]. Environ Sci Technol, 2014, 48:5620-5627.

    2. [2] CHRISTGEN B, YANG Y, AHAMMAD S Z, et al. Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater[J]. Environ Sci Technol, 2015, 49(4):2577-2584.

    3. [3] 霍朝晖, 杨晓珊, 陈晓丽, 等. 纳米银/二维石墨相氮化碳/还原氧化石墨烯复合材料的制备及其光催化降解抗生素[J]. 应用化学, 2020, 27(4):471-480.HUO Z H,YANG X S,CHEN X L, et al. Preparation of Ag/two-dimensional graphitic carbon nitride/reduced graphene oxide composite and its photocatalytic degradation of antibiotics[J]. Chinese J Appl Chem, 2020, 27(4):471-480.

    4. [4] LI D, ZENG S Y, HE M, et al. Water disinfection byproducts induce antibiotics resistance-role of environmental pollutants in resistance phenomena[J]. Environ Sci Technol, 2016, 50(6):3193-3201.

    5. [5] LI S, HU J Y. Photolytic and photocatalytic degradation of tetracycline; effect of humic acid on degradation kinetics and mechanisms[J]. J Hazard Mater, 2016, 318(15):134-144.

    6. [6] YAN W, YAN L, JING C Y. Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics:structure, photoactivity and degradation mechanisms[J]. Appl Catal B:Environ, 2019, 244(5):475-485.

    7. [7] IAKOVIDES I C,MICHAEL-KORDATOU I,MOREIRA N F F, et al. Continuous ozonation of urban wastewater:removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity[J]. Water Res, 2019, 159:333-347.

    8. [8] AHMAD H,KAMARUDIN S K,MINGGU L J, et al. Hydrogen from photo-catalytic water splitting process:a review[J]. Renew Sustainable Energy Rev, 2015, 43:599-610.

    9. [9] HE W J,SUN Y J,JIANG G M, et al. Defective Bi4MoO9/Bi metal Core/Shell heterostructure:enhanced visible light photocatalysis and reaction mechanism[J]. Appl Catal B:Environ,2018,239:619-627.

    10. [10] DONG F, ZHAO Z W, SUN Y J, et al. An advanced semimetal-organic Bi spheres g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification[J]. Environ Sci Technol, 2015, 49(20):12432-12440.

    11. [11] QU L L, LUO Z J, TANG C. One step synthesis of Bi@Bi2O3@carboxylate-rich carbon spheres with enhanced photocatalytic performance[J]. Mater Res Bull, 2013, 48(11):4601- 4605.

    12. [12] ZHANG Y F, ZHU G Q, HOJAMBERDIEV M, et al. Synergistic effect of oxygen vacancy and nitrogen doping on enhancing the photocatalytic activity of Bi2O2CO3 nanosheets with exposed {001} facets for the degradation of organic pollutants[J]. Appl Surf Sci, 2016, 371:231-241.

    13. [13] LIU Y Y, WANG Z Y, HUANG B B, et al. Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet[J]. Appl Surf Sci, 2010, 257(1):172-175.

    14. [14] CEN W L, XIONG T, TANG C Y, et al. Effects of morphology and crystallinity on the photocatalytic activity of (BiO)2CO3 nano/Microstructures[J]. Ind Eng Chem Res, 2014, 53(39):15002-15011.

    15. [15] AI Z H, HO W K, LEE S C, et al. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environ Sci Technol, 2009, 43(11):4143-4150.

    16. [16] NYHOLM R, BERNDTSSON A, MARTENSSON N. Core level binding energies for the elements Hf to Bi (Z=72-83)[J]. J Phys C:Solid St Phys, 1980, 13:L1091-L1096.

    17. [17] LI Y Y, DANG L Y, HAN L F, et al. Iodine-sensitized Bi4Ti3O12/TiO2 photocatalyst with enhanced photocatalytic activity on degradation of phenol[J]. J Mol Catal A:Chem, 2013, 379(15):146-151.

    18. [18] ZHOU Y G, ZHANG Y F, LIN M S, et al. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis[J]. Nat Commun, 2015, 6:8340-8347.

    19. [19] DONG F, LI Q Y, SUN Y J, et al. Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis[J]. ACS Catal, 2014, 4:4341-4350.

    20. [20] MCMAHON J M,SCHATZ G C, GRAY S K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi[J]. Phys Chem Chem Phys, 2013, 15:5415-5423.

    21. [21] WANG Z, JIANG C L, HUANG R, et al. Investigation of optical and photocatalytic properties of bismuth nanospheres prepared by a facilethermolysis method[J]. J Phys Chem C, 2014, 118(2):1155-1160.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  37
  • HTML全文浏览量:  4
文章相关
  • 收稿日期:  2020-07-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章