脯氨酸保护的铜纳米团簇的制备及其在三硝基苯酚检测中的应用

蔡志锋 武亮亮 戚凯飞 邓晨华 张申 张彩凤

引用本文: 蔡志锋, 武亮亮, 戚凯飞, 邓晨华, 张申, 张彩凤. 脯氨酸保护的铜纳米团簇的制备及其在三硝基苯酚检测中的应用[J]. 应用化学, 2021, 38(1): 107-115. doi: 10.19894/j.issn.1000-0518.200187 shu
Citation:  CAI Zhi-Feng,  WU Liang-Liang,  QI Kai-Fei,  DENG Chen-Hua,  ZHANG Shen,  ZHANG Cai-Feng. Synthesis of Proline-Stabilized Cu Nanoclusters for Detection of Picric Acid[J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 107-115. doi: 10.19894/j.issn.1000-0518.200187 shu

脯氨酸保护的铜纳米团簇的制备及其在三硝基苯酚检测中的应用

    通讯作者: 张申,E-mail:zhangs@tynu.edu.cn
  • 基金项目:

    山西省应用基础研究基金面上自然基金项目(No.201801D121257)、山西省高等学校科技创新项目(No.2020L0499)、太原师范学院校级大学生创新创业训练项目(No.CXCY2004)和山西省高等学校大学生创新创业训练计划项目(No.2020486)资助

摘要: 以脯氨酸(Pro)为保护剂,盐酸羟胺为还原剂,通过一步化学还原法制备脯氨酸稳定的铜纳米团簇(Cu NCs)。采用分子荧光仪和紫外可见吸收仪对Cu NCs的光学性质进行分析,通过透射电子显微镜(TEM)、X射线光电子能谱(XPS)和傅里叶变换红外波谱仪(FTIR)对Cu NCs的结构进行表征。TEM图像显示Cu NCs的形貌为球状,平均直径为1.89 nm。Cu NCs溶液在紫外光下呈蓝色,最大激发和发射波长分别为397和458 nm。Cu NCs的荧光可以选择性地被三硝基苯酚(PA)猝灭。该探针对PA的线性响应范围为0.5~15 μmol/L和20~70 μmol/L,检测限为0.092 μmol/L (S/N=3)。可能的检测机理是静态猝灭和内滤效应。此外,该荧光探针已成功应用于实际水样品中PA的测定。

English


    1. [1] XU B W, WU X F, LI H B, et al. Selective detection of TNT and picric acid by conjugated polymer film sensors with donor-acceptor architecture[J]. Macromolecules, 2011, 44(13):5089-5092.

    2. [2] BHALLA V, GUPTA A, KUMAR M, et al. Self-assembled pentacenequinone derivative for trace detection of picric acid[J]. ACS Appl Mater Interfaces, 2013, 5(3):672-679.

    3. [3] MU R, YUAN Y, KARNJANAPIBOONWONG A, et al. Fast separation and quantification method for nitroguanidine and 2,4-dinitroanisole by ultrafast liquid chromatography-tandem mass spectrometry[J]. Anal Chem, 2012, 84(7):3427-3432.

    4. [4] PENG Y, ZHANG A J, DONG M, et al. A Colorimetric and fluorescent chemosensor for the detection of an explosive-2,4,6-trinitrophenol (TNP)[J]. Chem Commun, 2011, 47(15):4505-4507.

    5. [5] RISKIN M, TEL-VERED R, BOURENKO T, et al. Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles:development of an electrochemical TNT sensor based on π-donor-acceptor interactions[J]. J Am Chem Soc, 2008, 130(30):9726-9733.

    6. [6] XU Y, LI B, LI W, et al. "ICT-not-quenching" near infrared ratiometric fluorescent detection of picric acid in aqueous media[J]. Chem Commun, 2013, 49(42):4764-4766.

    7. [7] CHENG S, DOU J, WANG W, et al. Dopant-assisted negative photoionization ion mobility spectrometry for sensitive detection of explosives[J]. Anal Chem, 2013, 85(1):319-326.

    8. [8] SHANKARAN D, GOBI K, MATSUMOTO K, et al. Highly sensitive surface plasmon resonance immunosensor for parts-per-trillion level detection of 2,4,6-trinitrophenol[J]. Sens Actuator B, 2004, 100(2/3):450-454.

    9. [9] KO H, CHANG S, TSUKRUK V V. Porous substrates for label-free molecular level detection of nonresonant organic molecules[J]. ACS Nano, 2009, 3(1):181-188.

    10. [10] HUANG H, LI H, FENG J J, et al. One-pot green synthesis of highly fluorescent glutathione-stabilized copper nanoclusters for Fe3+ sensing[J]. Sens Actuator B, 2017, 241:292-297.

    11. [11] OU G Z, ZHAO J, CHEN P, et al. Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions[J]. Anal Bioanal Chem, 2018, 410(10):2485-2498.

    12. [12] CAO H Y, CHEN Z H, ZHENG H Z, et al. Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging[J]. Biosens Bioelectron, 2014, 62(15):189-195.

    13. [13] 孙道华, 刘兆岩, 肖正梨, 等. 基于植物质还原的银纳米颗粒的制备及在织物抗菌整理上的应用[J]. 化工学报, 2015, 66(9):3678-3684.SUN D H, LIU Z Y, XIAO Z L, et al. Plant-mediated synthesis of silver nanoparticles and applicationin antibacterial fabric[J]. CIESC J, 2015, 66(9):3678-3684.

    14. [14] 江新德, 王振希, 江桂仙, 等. 植物还原法制备Au-Ag合金纳米材料及其拉曼应用[J]. 化工学报, 2016, 67(11):4906-4911.JIANG X D, WANG Z X, JIANG G X, et al. Raman enhancement of biosynthesized Au-Ag bimetallic nanomaterials[J]. CIESC J, 2016, 67(11):4906-4911.

    15. [15] WANG C X, CHENG H, HUANG Y J, et al. Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb2+ in living cells[J]. Analyst, 2015, 140(16):5634-5639.

    16. [16] APARNA R S, SYAMCHAND S S, GEORGE S. Tannic acid stabilised copper nanocluster developed through microwave mediated synthesis as a fluorescent probe for the turn on detection of dopamine[J]. J Clust Sci, 2017, 28(4):2223-2238.

    17. [17] YANG K C, WANG Y Y, LU C S, et al. Ovalbumin-directed synthesis of fluorescent copper nanoclusters for sensing both vitamin B1 and doxycycline[J]. J Lumin, 2018, 196:181-186.

    18. [18] GUI R J, SUN J, CAO X L, et al. Multidentate Polymers stabilized water-dispersed copper nanoclusters:facile photoreduction synthesis and selective fluorescence turn-on response[J]. RSC Adv, 2014, 4(55):29083-29088.

    19. [19] TANG T, OUYANG J, HU L S, et al. Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe(III) in human serum[J]. Microchim Acta, 2016, 183(10):2831-2836.

    20. [20] LIAN J Y, LIU Q, JIN Y, et al. Histone-DNA interaction:an effective approach to improve the fluorescence intensity and stability of DNA-templated Cu nanoclusters[J]. Chem Commun, 2017, 53(93):12568-12571.

    21. [21] BAGHERI H, AFKHAMI A, KHOSHSAFAR H, et al. Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor[J]. Biosens Bioelectron, 2017, 89(Pt 2):829-836.

    22. [22] ZHANG Y Y, LI Y X, ZHANG C Y, et al. Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets[J]. Anal Bioanal Chem, 2017, 409(20):4771-4778.

    23. [23] AI L, JIANG W R, LIU Z Y, et al. Engineering a red emission of copper nanocluster self-assembly architectures by employing aromatic thiols as capping ligands[J]. Nanoscale, 2017, 9(34):12618-12627.

    24. [24] ZHANG W J, LIU S G, HAN L, et al. Copper nanoclusters with strong fluorescence emission as a sensing platform for sensitive and selective detection of picric acid[J]. Anal Methods, 2018, 10(35):4251-4256.

    25. [25] YANG S H, SUN X H, CHEN Y. A novel fluorescence enhancement probe based on L-cystine modified copper nanoclusters for the detection of 2,4,6-trinitrotoluene[J]. Mater Lett, 2017, 194:5-8.

    26. [26] LI L, HOU C J, LI J W, et al. Fluazinam direct detection based on the inner filter effect using a copper nanocluster fluorescent probe[J]. Anal Methods, 2019, 11(36):4637-4634.

    27. [27] SHANMUGARAJ K, JOHN S A. Inner filter effect based selective detection of picric acid in aqueous solution using green luminescent copper nanoclusters[J]. New J Chem, 2018, 42(9):7223-7229.

    28. [28] PATEL R, BOTHRA S, KUMAR R, et al. Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips[J]. Biosens Bioelectron, 2018, 102:196-203.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  32
  • HTML全文浏览量:  3
文章相关
  • 收稿日期:  2020-06-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章